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BRIEF. We developed a computer program to simulate the stock option prices from S&P 500 market data by solving the Black-Scholes equation. 

ABSTRACT. The Black-Scholes model is an important mathemat-

ical model for financial markets. In this paper, we develop a com-

puter program to simulate random walk and geometric Brownian 

motions of the stock option prices from market data (VIX and S&P 

500) by solving the Black-Scholes- Merton equation, using a clas-

sical Runge-Kutta (RK) method and an iterated Crank-Nicolson 

(ICN) method. To our knowledge, this is the first time that the ICN 

method has been applied to solve the Black-Scholes equations. 

When the volatility is constant, results from both methods are in 

good agreement with the theoretical solution given by the Black-

Scholes formula. The RK and the ICN methods were found to have 

very similar results and the ICN method appears to be slightly 

more computationally efficient. 

INTRODUCTION.  

The Black-Scholes model is one of the most famous mathematical 

models for financial markets. This model was developed by Fischer 

Black and Myron Scholes in 1973 [1] and later expanded upon by Rob-

ert Merton [2]. A stock option is a financial contract that gives the 

owner of that contract a right to buy or sell a particular asset at a fixed 

price and fixed date, otherwise known as the maturity date. Call op-

tions give the owner to buy at a fixed price while put options allow the 

owner to sell at a fixed price.  

The Black-Scholes model was originally made for European options 

meaning options could only be exercised at the maturity date. How-

ever, a lot of the options on the market around the world are American 

options which means that they can be exercised at any point before the 

maturity date [3]. This characteristic of American options led to the 

development of the model to be more complex by developing new 

techniques such as using binomial and trinomial tree methods. 

One fundamental idea of the Black-Scholes equation is the concept of 

Brownian Motion. Brownian Motion as described by Sørensen and 

Skovgaard is a random process that follows the Gaussian distribution 

[4]. Brownian motion is the most studied stochastic process, and it is 

the foundation for many equations involving stochastic processes to-

day. Another one of the big limitations of the Black-Scholes model is 

that it assumes that prices will follow the paths that were predicted by 

Brownian motion. However, on real assets, prices can make many 

jumps as there are many factors to price other than those described by 

the model. A lot of price jumps can from things such as low liquidity 

and period of high stress in the market. Jump processes such as Pois-

son jumps have been proposed to enhance the Black-Scholes model. 

Poisson jumps allow for the models to predict more extreme outcomes 

or “fat tails,” which happen more often than what the model would 

usually predict [5]. 

One of the significant criticisms of the Black-Scholes model is the as-

sumption of constant volatility which doesn’t capture the flow of ac-

tual markets which experience phenomena such as volatility cluster-

ing. Assumptions like a constant volatility can lead to inaccuracies in 

real life because volatility is stochastic and fluctuates based on the en-

tire market. Other models have been developed to combat these short-

comings such as the stochastic volatility model by Tankov and the 

jump-diffusion model [6].  

Assumptions about market conditions in the Black-Scholes model are 

also very idealized. The model assumes that the markets are friction-

less. Things like commissions and restrictions on trading and taxes are 

not accounted for. In real markets however, traders are subjected to 

things such as commissions, bid and ask spreads, and restrictions on 

trading. The model also assumes that investors can make a perfectly 

hedged portfolio that keeps their risk to almost zero as they keep ad-

justing their positions [7]. This strategy and assumption ties into delta 

hedging in the Black-Scholes model but many investors can’t have a 

strategy like this as it is impractical due to market friction. 

Over the years, different observations in the markets have led to reveal 

new discrepancies between the model and the actual prices of options 

which has led to many innovations in the field of Quantitative Finance. 

Some other approaches have included models which have stochastic 

volatility in which volatility is treated as a random process [8, 9]. Each 

new approach of the model has aimed to provide a more accurate ap-

proach to the issues presented by the Black-Scholes model.  

In this paper, we develop a Matlab computer program to simulate ran-

dom walk and geometric Brownian motions of the stock option prices 

from 2018 and 2020 market data (VIX and S&P 500) by solving the 

Black-Scholes-Merton equation. In our computer program, we imple-

ment a classical Runge-Kutta (RK) method such as the one described 

by Burden and Faires [10] and a newly developed iterated Crank-Nic-

olson (ICN) method by Teukolsky [11] for the Black-Scholes equa-

tions. To our knowledge, this is the first time that the ICN method has 

been applied to the Black-Scholes equations. The numerical solutions 

are compared with the theoretical solution obtained from the Black-

Scholes formula. We further quantitatively compare the accuracy of 

the classical fourth-order RK method (RK4) and the ICN method with 

four iterations (ICN4) for heat equations derived from the Black-

Scholes equation.  

MATERIALS AND METHODS.  

The Black-Scholes-Merton equation is a Partial Differential Equation 

(PDE) given by [1,2] 
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where, 𝑉(𝑆, 𝑡) is the call or put price and it is a function of time 𝑡 and 

stock price 𝑆.  𝑟 is the risk-free interest rate which means returns given 

by an equity without any risk. 𝜎 is the volatility, the standard deviation 

of the stock's returns. 𝜕𝑉/𝜕𝑡 represents the rate of change of the price 

with respect to time. 𝜕𝑉/𝜕𝑆 and  𝜕2𝑉/𝜕𝑆2 are the first and second 

partial derivatives of the price with respect to the stock price 𝑆.  

The initial and boundary conditions for call option are: 

𝑉(𝑆, 𝑇) = 𝑚𝑎𝑥(𝑆 − 𝐾, 0),                                                               (2) 



 

𝑉(0, 𝑡) = 0,                                                                                         (3) 

𝑉(𝑆, 𝑡) = 𝑆, as 𝑆 → ∞.                                                             (4) 

where 𝐾 is the strike price and 𝑇 is the time of option expiration. For 

put option, the initial boundary conditions are  

𝑉(𝑆, 𝑇) = max(𝐾 − 𝑆, 0),                                                               (5) 

𝑉(0, 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡),                                                                         (6) 

𝑉(𝑆, 𝑡) = 0, as 𝑆 → ∞.                                                             (7) 

Under the transformation  

𝑢 = 𝑉𝑒−𝑟𝑡,   𝜏 = 𝑇 − 𝑡,   𝑥 = ln 𝑆,                                                       (8) 

the Black-Scholes equation (1) becomes: 
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Furthermore, by assuming constant volatility 𝜎, and using the follow-

ing transformation   

𝑧 = 𝑦 + (𝑟 −
1

2
𝜎2) 𝜏,                                                               (10) 

the Black-Scholes equation can be transformed into a heat equation: 
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Equation (11) can be solved analytically, yields the Black-Scholes for-

mula: 

𝑉(𝑆, 𝜏) = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝑡𝑁(𝑑2),                                                      (12) 

where 𝑁 is the normal distribution function and  
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The Black-Scholes formula applies by assuming constant volatility. 

When volatility is time dependent, the Black-Scholes-Merton equation 

can be solved using a numerical method such as the Runge-Kutta (RK) 

method [10] and iterated Crank-Nicolson (ICN) method [11]. The B-

S equation (9) can be written as the following differential equation:  

𝑑𝑢

𝑑𝑡
= 𝑓(𝑡, 𝑢),       0 ≤ 𝑡 ≤ 𝑇.                                                     (15) 

The classical fourth-order RK method (RK4) for equation (15) can be 

written as [4]: 

            𝑘1 = 𝑓(𝑢𝑛),                                                                                (16) 

            𝑘2 = 𝑓(𝑢𝑛 + 0.5ℎ𝑘1),                                                             (17) 

            𝑘3 = 𝑓(𝑢𝑛 + 0.5ℎ𝑘2),                                                             (18) 

            𝑘4 = 𝑓( 𝑢𝑛 + ℎ𝑘3),                                                                  (19) 

        𝑢𝑛+1 = 𝑢𝑛 +
1

6
ℎ(𝑘1 + 2𝑘2 + 3𝑘3 + 𝑘4).                                (20) 

Here, 𝑢𝑛 and 𝑢𝑛+1 represent the solution at time 𝑡 = 𝑛Δ𝑡 and 𝑡 =
(𝑛 + 1)Δ𝑡, respectively.  

The ICN method [11,12] with 4 iterations (ICN4) is given by the fol-

lowing and we refer it as the ICN4:           

𝑢1 = 𝑢𝑛 + ℎ𝑓(𝑢𝑛),                                                                  (21) 

𝑢2 = 𝑢𝑛 + ℎ𝑓(0.5𝑢𝑛 + 0.5𝑢1),                                           (22) 

𝑢3 = 𝑢𝑛 + ℎ𝑓(0.5𝑢𝑛 + 0.5𝑢2),                                           (23) 

𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓(0.5𝑢𝑛 + 0.5𝑢3),                                           (24) 

Both RK4 and ICN4 require the evaluation of function 𝑓 four times, 

so they cost similar computational CPU times. In our work, we use a 

second order centered finite difference method to approximate the 

right-hand side of the differential equation (15), which leads to sec-

ond-order accurate numerical solutions, although the RK4 is fourth-

order accurate in time.  

RESULTS. 

In this section, we simulate the random walk and geometric Brownian 

motions of the stock option prices from market data (S&P 500) by 

solving the Black-Scholes equation using the Black-Scholes (B-S) for-

mula and numerical methods RK4 and ICN4.  

Figure 1 shows the stock price from August 2017 to August 2018 and 

the corresponding volatility. However, since the BS formula assumes 

constant volatility, we use the mean volatility (𝜎𝑚 = 0.1374) in our 

simulation. As shown in Figure 2 and Figure 3, the ICN method were 

found to have very similar solutions and in good agreement with the 

theoretical results by the Black-Scholes formula. There is no visible 

difference between the ICN and the RK methods, so the RK figures 

are not shown here. Both methods cost similar computer resources and 

give very similar results, and both are in good agreement with the so-

lution obtained by the Black-Scholes formula. For the Black-Scholes 

formula, we use the built-in function blsprice in the Matlab finance 

toolbox. 

 

Figure 1. (Left) The S&P 500 Stock Price and (Right) the Volatility from Au-
gust 2017 to August 2018. 

 

Figure 2. Simulated Call and Put Prices of S&P 500 from August 2017 to Au-

gust 2018 using the Black-Scholes formula and the ICN method. Strike price 

𝐾 varies from $2600 to $3100. Upper row: Call prices. Lower row: Put prices. 

Left column: solution calculated using B-S formula. Right column: solution 
calculated using ICN method. 



 

Furthermore, we simulate the S&P500 data from September 2019 to 

August 2020 when the covid-19 global pandemic occurred. Figure 3 

shows the stock price during this period, and we can see the significant 

drop of stock price when the covid-19 hit the world, where reflected 

in the middle part of the figure. Figure 4 shows the simulated call and 

put prices using the ICN method and the B-S formula. There is no vis-

ible difference between the ICN and the RK methods, so the RK fig-

ures are not shown here. 

 

Figure 3. The S&P 500 Stock Price from September 2019 to August 2020. 

 

Figure 4. Simulated Call and Put Prices of S&P 500 from September 2019 to 

August 2020 using the Black-Scholes formula and the ICN method. Upper row: 
Call prices. Lower row: Put prices. Left column: solution calculated using B-S 
formula. Right column: solution calculated using ICN method. 

In the next test, we quantitatively compare the accuracy of the RK4 

and the ICN4 methods for the heat equation (11). Results are summa-

rized in Table 1 and Table 2 when 𝜎2 = 2 and 20. Both methods pro-

duce similar accuracy where the ICN4 appears to be slightly more ef-

ficient. For example, in Table 1, when 𝑁𝑥 = 320, both methods have 

relative error of 1.01 × 10−6, while the ICN4 costs 0.0209 seconds 

which is smaller than the 0.0252 seconds for the RK4 method. Similar 

results are observed in Table 2. When 𝑁𝑥 = 320, both methods have 

relative error of 7.52 × 10−8, while the ICN4 consumes about 10% 

less CPU time. 

DISCUSSION. 

Our findings on computational efficiency indicate that the ICN4 

method requires slightly less CPU time compared to RK4 while main-

taining the same level of accuracy. As shown in Table 1 and Table 2, 

ICN4 consumed about 10% less computational time for similar rela-

tive errors, making it a preferable option for large-scale simulations 

where performance is a crucial factor. The advantage of ICN4 in com-

putational efficiency can be particularly valuable for high-frequency 

trading algorithms or large portfolio risk assessments, where rapid 

computation is essential. 

Another important observation is that market conditions play a signif-

icant role in the accuracy of numerical methods. Our simulation of 

S&P 500 data from September 2019 to August 2020, which covers the 

onset of the COVID-19 pandemic, highlights how extreme market 

events can disrupt typical option pricing patterns. The significant drop 

in stock prices during this period led to increased volatility, which in 

turn challenges the assumptions of constant volatility in the Black-

Scholes model. While the ICN and RK methods performed well under 

normal conditions, the limitations of assuming constant volatility be-

come more apparent during periods of financial stress. Future research 

could involve modifying these numerical methods to incorporate sto-

chastic volatility models to better capture real-world market dynamics. 

The results of our simulations reinforce the reliability of numerical ap-

proaches in solving the Black-Scholes equation, particularly in cases 

where the volatility remains constant. The agreement between the ICN 

and RK methods with the Black-Scholes formula suggests that both 

methods can be effectively applied in practical financial modeling sce-

narios. However, despite the success of these numerical methods in 

matching theoretical predictions, it is important to acknowledge that 

real-world stock markets exhibit more complex behaviors than those 

captured by the Black-Scholes model. 

Over long-time horizons, such as multiple decades, the Black-Scholes 

model would likely struggle to maintain accuracy due to structural 

shifts in financial markets. Market conditions change over time due to 

factors such as technological advancements, economic policies, and 

evolving trading behaviors. The model assumes that markets remain 

frictionless and that prices follow a normal distribution, but market 

structures change. For example, the rise of algorithmic trading and 

high-frequency trading in modern markets has significantly altered 

price movements compared to those observed when Black and Scholes 

first developed their model in the early 1970s. 

One consideration to make with the model moving forward would be 

to implement machine learning or AI into the process of the model. 

Table 1. Comparison of numerical errors for the RK4 method and the 

ICN4 method when 𝜎 = √2. 

 RK4 ICN4 

𝑵𝒙 Relative  

Error 

CPU  

time (sec) 

Relative  

Error 

CPU  

time (sec) 

40 6.02E-04 0.0009 9.44E-04 0.0003 

80 4.29E-05 0.0011 4.12E-05 0.0011 

160 7.16E-06 0.0048 7.09E-06 0.0044 

320 1.01E-06 0.0252 1.01E-06 0.0209 

     

 

Table 2. Comparison of numerical errors for the RK4 method and 

the ICN4 method when 𝜎 = √20. 

 RK4 ICN4 

𝑵𝒙 Relative  

Error 

CPU  

time (sec) 

Relative  

Error 

CPU  

time (sec) 

40 1.94E-05 0.0025 3.62E-04 0.0024 

80 3.16E-06 0.0095 3.15E-06 0.0097 

160 5.32E-07 0.0414 5.31E-07 0.0418 

320 7.52E-08 0.2213 7.52E-08 0.2001 

     

 



 

With the rise of machine learning, there is increasing interest in using 

deep learning to model option pricing. These models can potentially 

adapt the model to market frictions, making it more accurate to real 

life. AI would also be able to adapt to the stochastic volatility of the 

market. Although some modified models already account for stochas-

tic volatility, an AI would be able to adjust in real time to the markets. 

Overall, while the Black-Scholes model remains a foundational tool in 

finance, its performance over long time horizons and during extreme 

market conditions is limited. Moving forward, hybrid models that in-

corporate elements of stochastic volatility, jump processes, and data-

driven techniques are likely to provide more accurate pricing in com-

plex market environments. 
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