Dye-Sensitized Solar Cells: Optimization of Parameters to Maximize Efficiency

Supporting Information

Ziqing Pang

Figure S1. Cyanidin-3-glucoside molecule bonded to TiO₂, forming a Cyanin-Ti⁴⁺ complex.

Figure S2. Circuitry containing the dye-sensitized solar cell, demonstrating its connection to resistors, the ADC, and the operational amplifier.

Figure S3. Spectral density spectra of A) different halogen lamp intensities and natural lighting and B) lasers. ND filtering with the halogen lamp at 110 V was also tested.

Figure S4. I-V curves of cells created from normal TiO₂ and TiO₂ subjected to a hydrothermal autoclaving method. DSSCs made from normal TiO₂ exhibited better performance.

Figure S5. I-V curves of cells with TiO2 treated with 0.1 M or 1.0 M concentrations of hydrochloric or acetic acid.

Figure S6. I-V curves of DSSCs stained with blackberry, pomegranate, blueberry, or raspberry dye.

Figure S7. I-V curves of cells under the halogen lamp at various voltages.

Figure S8. I-V curves of DSSCs under various types of lighting.