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BRIEF. This study leverages machine learning algorithms to analyze "lub-dub" heart sounds from digital stethoscopes, achieving 98% accuracy 

in detecting abnormal heartbeat-related heart diseases, offering a breakthrough in non-invasive cardiac diagnostics. 

ABSTRACT. Heart disease is the leading cause of global mortal-

ity. Use of capable and robust machine learning (ML) algorithms 

could help to greatly lower mortality rates due to these disorders. 

While most current research focuses on electrocardiogram (ECG) 

data, this work addresses the gap in the analysis of “lub-dub” heart-

beat sound patterns for diagnosis. This research study aims to im-

prove cardiac diagnosis by leveraging ML algorithms to analyze 

heartbeat sounds collected from digital stethoscopes. It accurately 

identifies abnormal heartbeat related disorders such as Valvular 

heart disease, septal defects, congenital heart defects, Arrhyth-

mias, electrolyte imbalances, Heart failure (S3), hypertension and 

left ventricular hypertrophy (S4), by analyzing the "lub-dub" heart 

sounds through machine learning, offering higher accuracy and 

early disease detection. This study utilizes heart sound datasets and 

employs noise reduction, exploratory data analysis (EDA), and 

feature extraction, focusing on Mel-frequency cepstral coefficients 

(MFCC) features. Several ML models, SVM, Random Forest, and 

boosting, were trained and evaluated for robustness on the basis of 

different metrics like accuracy (fraction of correctly classified in-

stances out of all instances), precision (fraction of correct predicted 

positives), recall (fraction of actual positives correctly predicted by 

the model), f1-score (harmonic mean of precision and recall) and 

auc-roc score (probability that a random chosen positive instance 

is ranked higher than a negative instance). Additionally, further re-

finement with the use of advanced models such as Long Short-

Term Memory (LSTM) improved accuracy greatly to 98%. The 

findings of this study demonstrate that ML algorithms can signifi-

cantly enhance abnormal heartbeat related heart disease detection, 

offering a promising step forward in non-invasive cardiac diagnos-

tics.  

INTRODUCTION. 

Cardiovascular diseases (CVDs) remain the leading cause of mortality 

worldwide, accounting for approximately 17.9 million deaths 

annually. Early detection is crucial for effective management and 

treatment of these conditions 1. Traditional auscultation, relying on 

physicians' auditory skills to interpret heart sounds, has been a 

cornerstone in diagnosing heart anomalies. However, this method is 

inherently subjective and susceptible to variability in clinical 

experience and environmental noise, potentially leading to 

misdiagnoses 2.  

Advancements in digital stethoscope technology have revolutionized 

cardiac auscultation by enabling the recording and digitization of heart 

sounds. These devices facilitate the application of machine learning 

(ML) algorithms to analyze heart sounds, offering a more objective 

and accurate assessment of cardiac function 3. By capturing high-fi-

delity audio data, digital stethoscopes allow for detailed analysis of 

heart sounds, including the fundamental 'lub-dub' (S1 and S2) sounds 

associated with valve closures 4.  

Machine learning models, particularly deep learning architectures, 

have demonstrated significant potential in classifying heart sounds and 

detecting abnormalities. The integration of digital stethoscopes with 

ML algorithms offers several advantages such as Noise Reduction5; 

Objective Analysis5; Early Detection6; Remote Monitoring7. 

generalizability of these models. For example, a study on heart sound 

classification in noisy environments proposed a combination of linear 

and logarithmic spectrogram-image features input into a residual 

convolutional neural network (ResNet). This approach achieved an 

area under the ROC curve (AUC) of 91.36% and an F1 score  of 

84.09%, demonstrating improved performance in challenging 

conditions8. Despite these advancements, challenges persist, 

particularly in developing robust algorithms capable of accurately 

analyzing and multi-classifying heart sounds across diverse 

populations and clinical settings. The fusion of digital stethoscope 

technology with machine learning algorithms represents a significant 

advancement in cardiac diagnostics. By leveraging high-quality heart 

sound data and sophisticated analytical models, this approach holds 

promise for enhancing the accuracy and reliability of heart disease 

detection, ultimately improving patient outcomes 9,10 . 

This research addresses a critical gap in cardiac diagnostics by utiliz-

ing digital stethoscope data in combination with machine learning 

(ML) algorithms to improve the accuracy of heart disease detection. 

By offering a non-invasive, highly sensitive, and practical diagnostic 

tool, this work presents significant advancements over traditional 

methods. The proposed approach mitigates such limitations through 

advanced ML algorithms such as LSTM, trained on large datasets, en-

abling the detection of subtle patterns that are imperceptible to the hu-

man brain. Through the construction of a dedicated dataset, implemen-

tation of noise reduction techniques, exploratory data analysis (EDA), 

and the application of advanced ML and LSTM models, this research 

successfully bridges existing gaps in cardiac diagnostics. The high ac-

curacy of 98% achieved by analyzing "lub-dub" heart sounds high-

lights the potential of combining digital stethoscope technology with 

state-of-the-art ML algorithms to enhance cardiovascular disease de-

tection. This integration represents a transformative step forward in 

non-invasive cardiac healthcare, demonstrating the potential to signif-

icantly improve diagnostic accuracy and patient outcomes. 

MATERIALS AND METHODS. 

Data Collection. 

The dataset of different types of heartbeat sounds: normal, murmur, 

abnormal, artifact, extrastole, and extrahls, was sourced from various 

sources, including the Pascal Classifying Heart Sounds Challenge 

Dataset, The Heart Sounds and Murmur Library (HSML), 

iStethoscope Pro Dataset, Cardiac Auscultatory Sounds (CASC) 

Dataset, and Physionet. The collected data was of lub-dub heartbeat 

sounds recorded from a digital stethoscope or the iStethoscope Pro 

iPhone application and stored in the WAV file format. These 

recordings were categorized into different classes, such as normal, 

murmur, abnormal, artifact, extrastole, and extrahls as shown in Fig 1. 



 

In total, the dataset comprised of 835 audio files with 587 labelled 

audio files and 248 unlabelled audio files. 

Data processing and augmentation. 

 Initially, noise reduction was performed for all audio files to eliminate 

sounds of all frequencies other than the required heart sounds, 

ensuring the clarity of the heart sounds. Subsequently, exploratory 

data analysis was carried out on each type of heartbeat sound category. 

Three different visualizations were observed for the heart beat sound 

audio files, i.e. audio waveform, audio spectrum, and audio 

spectrogram. Sound is the pressure of air propagates to our ear. The 

waveform graph shows the wave's displacement, and how it changes 

over time, gotten from a sound sensor that can detect sound waves and 

converts it to electrical signals. The waveform graph of normal and 

abnormal heartbeat sound is shown in Fig 2. A sound spectrum is a 

representation of a short sample of a sound in terms of the amount of 

vibration at each individual frequency. It is usually presented as a 

graph of either power or pressure as a function of frequency. It 

expresses the frequency composition of the sound and is obtained by 

analyzing the sound. The spectrum difference of normal and abnormal 

heartbeat sound is shown in Fig 3. Class weighting was incorporated 

in the dataset in the model training to address potential class imbalance 

and to compensate for the underrepresented categories. Furthermore, 

to enhance model generalization and reduce class imbalance effects, 

data augmentation techniques were applied, including: noise addition, 

time stretching and pitch shifting. These augmentation techniques 

helped improve classification performance, particularly for 

underrepresented heartbeat categories. 

 

Feature Engineering. 

The raw audio signal cannot be taken as input to the ML model 

because there will be a lot of noise in the audio signal. It was observed 

that extracting features from the audio signal and using it as input to 

the base model will produce much better performance than directly  

considering raw audio signal as input. Mel-frequency cepstral 

coefficient (MFCC) is the widely used technique for extracting the 

features from the audio signal. In sound processing, the mel-frequency 

cepstrum (MFC) is a representation of the short-term power spectrum 

of a sound, based on a linear cosine transform of a log power spectrum 

on a nonlinear mel scale of frequency. MFCCs are coefficients that 

collectively make up an MFC. They are derived from a type of cepstral 

representation of the audio clip (a nonlinear "spectrum-of-a-

spectrum"). The difference between the cepstrum and the mel-

frequency cepstrum is that in the MFC, the frequency bands are 

equally spaced on the mel scale, which approximates the human 

auditory system's response more closely than the linearly-spaced 

frequency bands used in the normal spectrum. This frequency warping 

can allow for better representation of sound. The audio files were in 

the range of 0.2 – 0.9 seconds of duration. 52 MFCC features were 

extracted for all the audio files. The MFCC representation of normal 

and abnormal labelled audio files is shown in Fig 4. 

Model Development. 

Python programming language and its libraries were used in Spyder 

IDE. Different machine learning algorithms, namely Support Vector 

Machines (SVM), Logistic Regression (LR), Random Forests (RF), 

Adaptive boosting (ADB) and XGBoost (XGB), were built using 

scikit learn library of Python to train classification and regression 

models. For classification, SVM, RF, XGboost, and AdaBoost models 

were built. For regression, LR, RF, SVM, XGboost and AdaBoost 

models were built. The models were initially built on with three classes 

labels (normal, murmur, and artifact) followed by model building with 

five classification labels (normal, murmur, and artifact, extrastole and 

extrahls). The classification ML models were followed by building of 

LSTM model using TensorFlow framework. The LSTM model is part-

 

Figure 1. A pie chart showing distribution of different categories of audio 
files. 

 

Figure 2.  Audio waveform graphs of Normal and Abnormal heartbeat 
sound waves. (A) It represents the audio waveform of normal heartbeat 

sound. (B) It represents the audio waveform of abnormal heartbeat sound. 

The x axis represents the time and y axis represents the amplitude of the 
sound. 

 

Figure 3. Audio spectrum graphs of Normal and Abnormal heartbeat sound 
waves. (A) It represents the audio spectrum of normal heartbeat sound. (B) 

It represents the audio spectrum of abnormal heartbeat sound. The x axis 
represents the frequency and y axis represents the magnitude. 

 

Figure 4. A representation of MFCC features. (A) The MFCC feature graph 

of normal audio file. (B) The MFCC feature graph of abnormal audio file. 
The x axis represents the time and y-axis represents the mfcc coefficients. 



 

 

 

icularly suited for time-step based sequential data like heart sounds, 

which exhibit temporal dependencies. Evaluation metrics such as 

accuracy, precision, F1 score, recall, ROC AUC were computed to 

evaluate classification models that provided insights into the models' 

ability to accurately classify and distinguish between heart sound 

categories.. Mean absolute error (MAE), and root mean squared error 

(RMSE) were computed to evaluate the performance of regression 

models to quantify the models' performance in predicting risk scores. 

RESULTS. 

Classification model performance. 

 For the classification models focusing on 3-categories of heart sounds 

(normal, abnormal, and device-related errors), the XGBoost classifier 

achieved an accuracy of 93.1%, demonstrating its effectiveness in dis-

tinguishing heart sound categories as shown in Table 1. However, 

when the classification task was extended to 5-categories (normal, ab-

normal, and specific abnormalities such as murmurs, arrhythmias, and 

device-related errors), a slight drop in accuracy was observed. The 

XGBoost model achieved an accuracy of 89%, maintaining its posi-

tion as the best-performing model in this category. To ensure statistical 

robustness, a 95% confidence interval (CI) was computed for the re-

ported 98% AUC-ROC, yielding a range of [95.46%, 100%]. Addi-

tionally, 5-fold cross-validation was conducted, resulting in a mean 

AUC-ROC of 97.11% (±1.16%), demonstrating consistent perfor-

mance across training subsets. These measures confirm the model’s 

reliability on unseen data. 

Regression model performance.  

For regression models, designed to predict a risk score for heart dis-

eases, the XGBoost model performed best with a mean absolute error 

(MAE) of 0.33, indicating its robustness in predicting numerical risk 

scores with high precision as shown in Table 2. No significant changes 

were observed in the MAE values for the regression models under the 

5-category setup. The findings highlight that while the 3-category clas-

sification is reliable for basic differentiation, the 5-category classifica-

tion provides a more detailed analysis of specific heart sound abnor-

malities at a slight trade-off in accuracy. The evaluation scores of each 

ML model for classification and regression models are shown in Table 

1 and 2, respectively. 

LSTM Model Architecture. The deep learning model used in this study 

is a hybrid CNN-LSTM network designed to extract both spatial and 

temporal features from heart sound data. The architecture consists of 

three 1D convolutional layers (2048, 1024, and 512 filters, kernel size 

= 5, ReLU activation), each followed by max pooling and batch nor-

malization to enhance feature extraction and stability. These extracted 

spatial features are then processed through two stacked LSTM layers 

(256 and 128 units), enabling the model to capture temporal depend-

encies in the heart sound sequences. The fully connected layers consist 

of 64 and 32 dense units, each followed by dropout (0.5 rate) to pre-

vent overfitting. The final softmax output layer classifies heart sounds 

into three categories (normal, abnormal, and device error). The model 

contains 14,130,371 total parameters, of which 14,123,203 are traina-

ble. This architecture significantly contributed to the model’s 98.66% 

accuracy for 3-category classification and 95.77% for 5-category clas-

sification, as shown in Table 1. 

DISCUSSION. 

This study explored the application of ML and LSTM models for the 

analysis of "lub-dub" heart sounds, aiming to detect and classify ab-

normal heartbeat-related disorders such as valvular heart disease, sep-

tal defects, congenital heart defects, arrhythmias, electrolyte imbal-

ances, heart failure (S3), hypertension, and left ventricular hypertro-

phy (S4) 11. The primary objective was to enhance diagnostic accuracy 

by leveraging advanced computational techniques to analyze heart 

sound patterns, a critical yet underutilized area in cardiovascular diag-

nostics. The methodology involved extracting MFCC features from 

heart sound recordings during EDA and employing ML models such 

as SVM, RF, and XGB, alongside an LSTM model. These models 

were evaluated for their robustness using standard metrics such as ac-

curacy, precision, recall, F1-score, and AUC-ROC. 

The superior performance of the LSTM model underscores the im-

portance of leveraging temporal dependencies and sequential patterns 

in heart sound data, which are often overlooked by traditional ML 

methods 12. Integrating this algorithm with digital stethoscopes could 

enable clinicians to directly analyze heart sounds during routine 

check-ups, enhancing diagnostic accuracy and efficiency. Such an ap-

proach addresses the limitations of traditional stethoscopes, which are 

prone to subjective variability depending on the physician's hearing 

acuity 13. The ability to detect CVDs at an early stage is particularly 

crucial, as timely intervention can prevent the progression of these 

conditions and reduce mortality. For instance, early detection of ar-

rhythmias or valvular disorders could prompt immediate medical at-

tention, avoiding life-threatening complications 14. 

The regression model predicted a continuous output by mapping ex-

tracted acoustic features (MFCCs, spectral, and time-domain proper-

ties) to a severity indicator, even though predefined risk scores were 

not provided during training. This enabled the model to infer relative 

risk levels based on learned feature distributions from labeled heart-

beat sound data. Thus, the regression model provided a continuous risk 

estimation based on extracted acoustic features, complementing the 

classification framework by enabling severity assessment of abnormal 

heart sounds.  

Table 1. Evaluation scores of all the classification ML models and LSTM models for both 3 and 5 categories of heart-beat sound label 

Model Name /  

Evaluation Metrics 

SVM XGB ADB RF LSTM  

3 Classes 5 classes 3 clas-
ses 

5 clas-
ses 

3 clas-
ses 

5 clas-
ses 

3 clas-
ses 

5 clas-
ses 

3 clas-
ses 

5 clas-
ses 

Accuracy 0.82 0.74 0.93 0.89 0.66 0.55 0.90 0.85 0.98 0.95 

Precision 0.83 0.743 0.93 0.90 0.59 0.36 0.90 0.87 0.94 0.92 

Recall  0.82 0.74 0.93 0.89 0.66 0.55 0.90 0.85 0.94 0.92 

F1 Score 0.80 0.72 0.92 0.89 0.60 0.42 0.90 0.84 0.94 0.92 

AUC ROC N/A N/A 0.98 0.98 0.65 0.58 0.97 0.97 N/A N/A 

Table 2.  Evaluation scores of all the regression ML models for both 3 and 5 categories of heart-beat sound labels 

Model Name /   

Evaluation Metrics 

SVM XGB ADB RF LR  

3 Classes 5 classes 3 classes 5 classes 3 classes 5 classes 3 classes 5 classes 3 classes 5 classes 

MAE 0.54 0.54 0.32 0.32 0.61 0.61 0.36 0.36 0.40 0.40 

RMSE 0.81 0.81 0.49 0.49 0.77 0.77 0.55 0.55 0.82 0.82 



 

Future research of this project is focused on designing a hardware eas-

ily accessible to common people for autonomous data collection and 

analysis of heart-beat sounds with the incorporation of the model in 

the hardware which can help people to get the risk score of disease at 

home. Thus, this study demonstrates the potential of machine learning 

and deep learning models, particularly LSTM, in transforming cardiac 

diagnostics. By leveraging heart sound data collected through digital 

stethoscopes, the proposed framework achieves exceptional accuracy 

and reliability in detecting cardiovascular diseases. While challenges 

remain, the integration of such models into clinical workflows holds 

immense promise for improving early disease detection, enhancing pa-

tient outcomes, and addressing global disparities in healthcare access. 
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