
The Impact of Prompt Engineering on GPT-4’s Mathematical
Reasoning
Saanvi C. Hublikar

Mission San Jose High School, Fremont, California, United States, 94539

KEYWORDS. Artificial Intelligence, Mathematical Reasoning, Large Language Model.

BRIEF. This study uses different methods of prompting to improve large language models’ mathematical reasoning.

ABSTRACT. Artificial intelligence (AI) has the potential to revo-

lutionize science and technology, but even many of the latest AI

systems have difficulty solving general math problems due to lim-

ited reasoning skills and training data [1]. This study utilizes

prompt engineering to understand which methods of prompting are

most effective in assisting generative large language models such

as GPT-4 in solving math problems. The methods tested were re-

flection, planning, multi-agent collaboration, and one- and few-

shot prompting. Effectiveness of the first three methods was meas-

ured through the qualitative analysis of the LLM’s response to Ar-

tificial Intelligence Math Olympiad Problems. Success of one- and

few-shot problem solving was measured by the percentage of the

Massive Multitask Language Understanding (MMLU) problems

that the LLM solved. It was seen that while planning and reflection

solved problems with similar accuracy as basic, unenhanced

prompting, both methods forced ChatGPT to work through the

problem in a more organized and methodical manner, improving

the model’s reasoning. However, neither method fixed major rea-

soning errors, especially in cases where the model approached the

problem in a completely incorrect way. Similarly, multi-agent col-

laboration incorporated these methods and provided more struc-

ture and logic to the problem-solving process but led to incon-

sistent results. This method proved to be finicky and did not im-

prove the model’s accuracy overall. One-shot and five-shot

prompting, on the other hand, were seen to improve the accuracy

of the model.

INTRODUCTION.

Although ChatGPT and other AI systems are widespread today, most

LLMS still struggle with mathematical reasoning. When tested on the

Massive Multitask Language Understanding (MMLU) dataset, which

is used in this study to measure the success of one-shot and few-shot

prompting, GPT-3 performed poorly in solving high school mathemat-

ics problems [2]. Calculation-based subjects like math and physics

showed low accuracy; the success rate when solving high school math-

ematics questions averaged below 30% [2]. This is likely because

GPT-3 acquires declarative knowledge better than procedural

knowledge, which can be seen in its higher performance in infor-

mation-based subjects like high school psychology (~60%), high

school government, politics, and geography (~58%), and international

law (~56%) [2].

The model used in this work, GPT-4, was previously tested on SAT

math and grade-school mathematics and was tested with an overall

math factuality evaluation. It scored a 700 out of 800 on SAT math,

an 89th percentile mark [3]. This is a significant improvement when

compared to GPT-3’s score of 590 (~70th percentile) [3]. When tested

on grade school mathematics with five-shot prompting, a method

tested in this study in comparison with zero-shot and one-shot prompt-

ing, GPT-4 showed a 92% success rate, a major improvement from

GPT-3’s 57% accuracy with the same prompting [3]. However, on the

overall math factuality evaluation, GPT-4 had a less than 70% success

rate, lower than categories like history and science, which are based

more on declarative knowledge than reasoning [3].

Some methods of prompting have been tested recently to improve

LLMs’ performance. When GPT-3 was tested on closed book ques-

tions answering with zero-, one-, and few-shot prompting, the model

showed an overall performance improvement of 3.7% accuracy for

one-shot prompting and an additional 3.2% for few-shot prompting

[4]. However, it is important to note that these tasks do not require

mathematical reasoning and therefore cannot be used as a direct com-

parison to the results of this study. When tested with common sense

reasoning tasks, GPT-3 showed a much lower performance improve-

ment (~2.9% from zero-shot to few-shot prompting) [4].

So far one of the most successful models is the breakthrough model

AlphaProof, created by fine-tuning a Gemini model [1]. This model

trains itself to prove mathematical statements using a reinforcement

learning-based algorithm for formal mathematical reasoning [1].

While proofs involving mathematical reasoning can be formally iden-

tified for correctness, they are constrained by a limited amount of writ-

ten human data [1]. Natural language-based approaches, on the other

hand, have much more data but can hallucinate plausible answers; in

other words, the LLM will provide incorrect or misleading results and

present them as facts [1]. The AlphaProof model combines these ap-

proaches by translating natural language problems to formal language,

generating solutions, and then proving or disproving them. These

proofs are then used to reinforce the model and improve its perfor-

mance [1].

MATERIALS AND METHODS.

Dataset. Two datasets of math problems were used to check the AI

model’s accuracy. The training problem set from the 2024 Artificial

Intelligence Mathematical Olympiad (AI|MO) is a set of 10 training

problems publicly available through Kaggle. The dataset contains the

ID, problem, and answer for each question [7]. The MMLU high

school mathematics test dataset is a set of 270 high school level math

problems used as a benchmark to measure a LLM’s problem solving

ability with one-shot prompting [5]. This dataset contains math prob-

lems, four possible answer choices from A-D, and the solution for each

question. All 270 problems from this dataset were used to find GPT-

4's success rates for one-shot and five-shot prompting.

All 10 AI|MO problems were tested, but the responses to 6 problems

were further studied because ChatGPT was unable to provide any so-

lution, whether correct or incorrect, to the other problems. The follow-

ing is a list of the 6 important AI|MO problems referenced in this study

[7]:

Problem 1: Let k, l > 0 be parameters. The parabola

𝑦 = 𝑘𝑥2 − 2𝑘𝑥 + 𝑙 (1)

intersects the line y = 4 at two points A and B. These points are distance

6 apart. What is the sum of the squares of the distances from A and B

to the origin?

Problem 2: Each of the three-digits numbers 111 to 999 is colored blue

or yellow in such a way that the sum of any two (not necessarily dif-

ferent) yellow numbers is equal to a blue number. What is the maxi-

mum possible number of yellow numbers there can be?

Problem 5: There exists a unique increasing geometric sequence of

five 2-digit positive integers. What is their sum?

Problem 6: For how many positive integers m does the equation

||𝑥 − 1| − 2| =
𝑚

100
 (2)

have 4 integer solutions?

Problem 7: Suppose that we roll four 6-sided fair dice with faces num-

bered 1 to 6. Let a/b be the probability that the highest roll is a 5, where

a and b are relatively prime positive integers. Find a + b.

Problem 9: Let ABCD be a unit square. Let P be the point on AB such

that

|𝐴𝑃| =
1

20
 (3)

and let Q be the point on AD such that

|𝐴𝑄| =
1

24
 (4)

The lines DP and BQ divide the square into four regions. Find the ratio

between the areas of the largest region and the smallest region.

Basic Prompting. An OpenAI agent was created with the following

system prompt: “You are an expert mathematician who is seasoned at

solving problems and explaining your solutions.” AI|MO problems

were given exactly how they appeared in the training problem set, pre-

ceded by the prompt “Solve this problem.”

Reflection. Reflection prompts the LLM to review its work instead of

generating the final output in the first try, which often leads to pre-

ventable errors. In the initial stage, this method was implemented by

adding the phrase “Solve this problem, then revise your solution,” to

the agent’s prompt. Then, more detailed instructions were included

(see Reflection #2 in Table 1 for details). Reflection was also utilized

through multi-agent collaboration (see Multi-Agent Collaboration).

Planning. Planning prompts the LLM to create a list of steps before

solving a problem, leading to a more efficient agentic workflow. The

creative problems provided by the AI|MO problem set require reason-

ing and multiple mathematical skills and therefore cannot be solved in

a single step; however, these steps cannot be specified in the prompt

due to how varied the problems and skill sets required to solve them

are. Reflection was also utilized through multi-agent collaboration

(see Multi-Agent Collaboration).

Multi-Agent Collaboration. The first method of multi-agent collabo-

ration was through conversable agents by Autogen, an open-source

programming framework for agentic AI by Microsoft [6]. Conversa-

bleAgent is a general class for agents capable of exchanging messages

to collaborate to perform a task. This was used to create two agents

initialized as “expert mathematicians” and prompted to chat with each

other to plan out the solution, solve the problem, and correct each

other’s solutions until they reached the correct answer. Certain trials

specifically prompted the agents to use planning or reflection when

solving the problem.

The second method of multi-agent collaboration utilized Autogen’s

group chat tool. Four agents were created: an admin that was tasked

with presenting the problem, a planner that listed the steps to the prob-

lem, a calculator that solved the problem based on the planner’s steps,

and a checker that revised the calculator’s solution. This method im-

plemented planning and reflection through the planner and checker

agents. The group chat method was initially implemented with Auto-

gen’s GroupChatManager agent having full control over which agents

were called to speak.

The final tested method of multi-agent collaboration was a further re-

stricted version of the group chat method. Instead of using Autogen’s

tools, agents were created with highly specific system prompts and in-

structions. Similarly to the group chat method, a planner, mathemati-

cian, and checker were created; however, the admin and GroupChat-

Manager were removed and replaced by a hard-coded speaking order.

Two additional agents were also created, one with the purpose of re-

vising the plan and the other tasked with summarizing the final solu-

tion. This method began with the planner creating a step-by-step plan

for solving the given problem. This plan was then passed to another

agent which either revised the plan or decided that the original plan

was efficient. This new plan was then given to a mathematician agent,

which solved only the first step of the problem. The checker then re-

vised that single step before passing it back to the mathematician to

solve the next step. This created a back and forth between the two

agents until a list of the checker’s revised solutions to each step was

passed to the final agent to summarize the work and provide the solu-

tion.

One-Shot and Few-Shot Prompting. One-shot and few-shot prompting

were tested on the MMLU high school mathematics dataset, and data

was collected to find the success rate of each method. Accuracy was

recorded for the following conditions: basic prompting, asking to in-

sert scratchwork, one-shot prompting, and five-shot prompting.

Table 1. Overview: Methods of Prompting.

Method Example/Explanation

Basic Prompting “Solve this problem: [AI|MO problem]”

Reflection #1
“Solve this problem, then revise your solution:
[AI|MO problem]”

Reflection #2

“1) Solve this problem: [AI|MO problem]

2) Now assume that this solution is incorrect. List out
all the mistakes you made when solving this problem.

3) Solve the problem again, considering the mistakes
you found in your original solution.”

Planning

“1) Consider this problem: [AI|MO problem]

2) First list out the steps you will take to solve the
problem.

3) Solve the problem.”

Multi-Agent
Collaboration #1

Two Autogen conversable agents both initialized as
“expert mathematicians”

Multi-Agent
Collaboration #2

Four Autogen conversable agents initialized as an ad-

min, planner, calculator, and checker; regulated by
Autogen’s GroupChatManager

Multi-Agent
Collaboration #3

Five Autogen conversable agents initialized as a plan-

ner, calculator, plan checker, calculation checker, and
summarizer; regulated by a hard-coded speaking order

One-shot
Prompting

“Solve this problem: [MMLU problem]

Here is an example of how to solve a problem:

Example problem: [different MMLU problem]

Example solution: [human solution to the example
problem]”

Five-shot
Prompting

Similar to one-shot prompting but with five examples
rather than one

RESULTS.

Basic Prompting. When provided with only a question from the

AI|MO dataset and no further instructions, GPT-4 was able to solve

only Problem 6, albeit with inconsistent results.

Common mistakes included a tendency to misunderstand or ignore

specific requirements of the problem, which can be seen in problems

1 and 5. Though problem 1 required an integer solution, GPT-4 pro-

vided an answer in terms of the variable k used in the question. In

problem 5, which specifies a “unique increasing geometric sequence

of five 2-digit positive integers,” GPT-4 responses in many trials in-

cluded non-integer terms. The model also arbitrarily assigned incor-

rect values without explanation; for example, in problem 5, it sug-

gested that the “geometric sequence could be identified starting with

‘a’ as 12 and ‘r’ as ⅔,” then concluded that the problem could not be

solved because this would result in a decreasing geometric sequence.

Other mistakes included executing the wrong steps to solve the prob-

lem or misunderstanding a graphical representation of a question.

Reflection. The reflection method yielded similar results; however, it

was commonly able to identify its mistakes even if it was not able to

provide a final correct solution. We can look at problem 5, where GPT-

4 originally generated a response that set the value of the ratio to be 1,

which does not fulfill the definition of an increasing geometric se-

quence. When revising its answer, it pointed out this mistake and cor-

rectly changed the ratio to 1.5. However, it erred when finding the se-

quence’s first term and therefore could not provide the correct solu-

tion.

Planning. The planning method also generated similar results to basic

prompting and reflection. However, it was seen that prompting the

LLM to create a list of steps beforehand almost always resulted in an

efficient and logical plan, which was lacking from GPT-4’s responses

to basic prompting. With planning, the issue lay instead in the execu-

tion of the plan—GPT-4 commonly ignored requirements of the prob-

lem despite them being specified in the plan or made a calculation or

reasoning error while solving the problem.

Trials from problem 5 can be examined to determine planning’s effect

on LLM responses. In trial 1 of the planning method, ChatGPT de-

tailed a plan based on guessing and checking values for the first term

and ratio of the sequence which should have yielded an accurate solu-

tion. However, after multiple rounds of guessing and checking, the

model ignored one of the major requirements of the problem—that all

terms of the sequence must be 2-digit numbers—and provided a se-

quence involving 1-digit terms. In trial 2, ChatGPT generated the cor-

rect ratio but automatically assigned the first term of the sequence to

be 10 because it is the smallest 2-digit number, resulting in an incorrect

answer.

Multi-Agent Collaboration. Multi-agent collaboration provided better

results than the previous two due to its more efficient incorporation of

planning and reflection, though it was the most finicky method. Com-

piled results from conversable agents, task decomposition, and re-

stricted agents show that when multiple agents were asked to work

together to solve the problem, the model was able to solve problems

1, 4, 5, 6, and 7 from the AI|MO training dataset at least once. Con-

versable agents by Autogen solved problem 1 through planning and

reflection: agents provided a list of steps, executed them to reach an

incorrect solution, and revised the solution to generate the right an-

swer. Similar processes occurred when the task decomposition method

was utilized with problems 1, 5, and 6, and when the restricted agent’s

method was used to solve problems 1 and 7.

However, when other correct responses were further analyzed, the re-

sults showed that it was not always the method itself that generated

improved responses. The Autogen conversable agents solved prob-

lems 5 and 6 in one attempt using the planner agent, similarly to prob-

lems 4 and 7 in task decomposition. Additionally, agents were not per-

forming the tasks they had been assigned through their system prompt;

both correct and incorrect responses showed the planner and checker

agents solving the problems without delegating any tasks to the calcu-

lator method. To limit this, agents were restricted with hard-coded

speaking orders and response permissions.

Despite this, restricted agents yielded similar results to conversable

agents and task decomposition. The scratchwork was improved, as

agents were performing the correct roles and switching speakers be-

tween each step of the problem; however, this did not improve accu-

racy in the final answers.

One-Shot and Few-Shot Prompting. When tested on a randomly se-

lected 100 problems from the MMLU high school mathematics da-

taset, GPT-4 with basic, unenhanced prompting had a 69% success

rate. When prompted to insert scratchwork, GPT-4 yielded similar re-

sults. With one-shot prompting, where one example question from the

dataset was solved and provided in the prompt, the LLM solved them

with a 74% success rate, and five-shot prompting produced 75% accu-

racy.

Table 2. Overview: Results of Prompting.

Method Solved Problems/Success Rate

Basic Prompting AI|MO Problem 6 (inconsistent results)

Reflection (#1 & #2)
No solved problems, but it generally pro-
duced closer results than basic prompting

Planning AI|MO Problem 6

Multi-Agent Collaboration
(#1, #2, & #3)

AI|MO Problems 1, 4, 5, 6, & 7 (inconsistent
results)

One-shot Prompting
74% success rate for MMLU problems (com-

pared to a 69% success rate for prompting
with no examples)

Five-shot Prompting 75% success rate for MMLU problems

DISCUSSION.

Overall, it can be determined that of all the methods tested, one-shot

and few-shot prompting most consistently improved LLM perfor-

mance when solving math problems. These methods showed steady,

improved results throughout multiple trials. One-shot prompting

showed an average improvement in accuracy of around 5%, while

few-shot prompting increased it by another 1%.

While GPT-4 was unable to consistently solve any of the AI|MO test-

ing problems on its own, planning and reflection did not significantly

improve its accuracy when these methods were applied individually.

However, performance improved when these methods were incorpo-

rated into multi-agent collaboration, though it is important to note that

these results were inconsistent. Agents were not always performing

tasks according to their assigned roles, and running the same problem

with the same prompting at different times led to different results—

some attempts provided the right answer while other attempts did not

even use the correct method.

The results show that while multi-agent collaboration was able to solve

more difficult problems than one-shot and few-shot prompting, the lat-

ter methods provided consistency that was lacking in multi-agent col-

laboration. It can be concluded that multi-agent collaboration can as-

sist LLMs in solving difficult math problems over multiple trials,

while one-shot and few-shot prompting can consistently improve an

LLM’s mathematical reasoning.

ACKNOWLEDGMENTS.

Thank you to Dr. George Shakan for invaluable guidance on this pa-

per.

REFERENCES

1. Google DeepMind. AI achieves silver-medal standard solving Interna-

tional Mathematical Olympiad problems. https://deepmind.google/dis-

cover/blog/ai-solves-imo-problems-at-silver-medal-level/. 25 July

2024.

2. D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, J.

Steinhardt, Measuring Massive Multitask Language Understanding.

arXiv:2009.03300v3 [cs.CY] (2021). [arXiv]

3. J. Achiam, S. Adler, et al., GPT-4 Technical Report.

arXiv:2303.08774v6 [cs.CL] (2024). [arXiv]

4. T. B. Brown, B. Mann, et al., arXiv:2005.14165v4 [cs.CL] (2020).

[arXiv]

5. D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, J.

Steinhardt (2021). Measuring Massive Multitask Language Under-

standing [Software]. GitHub. https://github.com/hendrycks/test.

6. Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, S. Zhang,

X. Zhang, J. Liu, A. H. Awadallah, R. W. White, D. Burger, C. Wang

(2024). Microsoft AutoGen [Software]. GitHub. https://github.com/mi-

crosoft/autogen.

7. XTX Investments. AI Mathematical Olympiad - Progress Prize 1.

https://kaggle.com/competitions/ai-mathematical-olympiad-prize,

2024. Kaggle.

8. P. Liu, MMLU Dataset, https://www.kaggle.com/datasets/peiyu-

anliu2001/mmlu-dataset.

Saanvi C. Hublikar is a student

at Mission San Jose High

School in Fremont, California.

She participated in a research

internship through the College

Impact.

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2009.03300v3
https://arxiv.org/abs/2303.08774v6
https://arxiv.org/abs/2005.14165v4
https://github.com/hendrycks/test
https://github.com/microsoft/autogen
https://github.com/microsoft/autogen
https://kaggle.com/competitions/ai-mathematical-olympiad-prize
https://www.kaggle.com/datasets/peiyuanliu2001/mmlu-dataset
https://www.kaggle.com/datasets/peiyuanliu2001/mmlu-dataset

