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BRIEF. Utilizing machine-learning guided algorithm to discover bioactive molecule functions. 

ABSTRACT. Antimicrobial resistance is a recurring issue in iden-

tifying drug compounds that is derived from over prescribed anti-

biotic prescriptions. Developing new drugs is costly and time-con-

suming which is why machine learning is a significant asset in dis-

covering viable drugs that are safe and effective. This creates  large 

demand compounds and relies greatly on identifying unknown bi-

oactivity within biosynthetic gene clusters. This study aims to use 

a machine learning algorithm to create predictions on various bac-

terial strains. The bacterial strains used for this experiment include 

P. rubra, R. rhizogenes, and H. cretacea. Over the course of six 

weeks, metabolite extraction workflows, including bioactivity as-

says on each strain, were carried out to test the bioactive com-

pounds. Gel analyses of polymerase chain reaction products were 

performed to amplify DNA from the bacterium’s genome to deter-

mine if it is the correct uncontaminated species. Although the al-

gorithm predicted high bioactivity for these strains, the assays re-

sulted in low inhibition in the conditions tested. Overall, low bio-

activity levels were observed, indicating there are few compounds 

to discover or the conditions were not optimal for high inhibition 

results. We interpret these results to indicate that higher concen-

trations are needed to obtain bioactivity.  

INTRODUCTION.  

According to the Center for Disease Control, healthcare providers at-

tributed approximately 236.6 million antibiotic prescriptions to Amer-

icans in 2022, with at least 28% of those prescribed medications 

deemed unnecessary [1]. Despite the publics sincere need for prescrip-

tion medicine, overuse of antibiotic prescriptions is an important issue 

that can lead to antimicrobial resistance. Antimicrobial resistance 

(AMR) occurs when bacteria, viruses, and fungi no longer respond to 

antimicrobial medicines. It is estimated that by 2050, over 39 million 

deaths will be caused by antibiotic-resistant infections [2].  

Research and discovery costs range from $314 million to $2.8 billion 

and take 10 years to develop, often more per antibiotic [2]. Given the 

high cost and time to develop new drugs, machine learning-guided dis-

covery is a significant asset in discovering viable drug prospects safely 

and efficiently. Machine learning-guided discovery algorithms predict 

the number of biosynthetic gene clusters (BGCs) per genome [3]. Ac-

cess to these BGC sequences aids in predicting novel activities from 

natural products for drug discovery [3]. 

Over 50% of FDA-approved drugs are either natural products or de-

rived from them, such as secondary metabolites [4]. Many antibiotics 

used since 1943 are produced by the bacterium Streptomyces. Strepto-

myces are not a single bacterium but a group of related bacteria which 

produces a variety of secondary metabolites used in antibiotics. How-

ever, since Streptomyces are utilized as a source in many antibiotics, 

discovering new natural product activities becomes increasingly chal-

lenging as most have already been identified. Combining the power of 

machine learning and studying strains that are less researched and 

studied compared to Streptomyces, could help lead to the discovery of 

new natural product activities. Therefore, contributing and utilizing 

machine learning data assists in the discovery of new natural product 

activities, ultimately leading to the development of new drugs, antibi-

otics, and treatments. 

Streptomyces in Drug Discovery. Streptomyces is identified as a group 

of related bacteria with a large production of secondary metabolites, 

which are commonly used in human drugs [5]. Almost all FDA-

approved drugs originate from the Streptomyces strain due to its di-

verse array of biosynthetic gene clusters (BGCs) [5]. A microbiologist, 

Selman Waksman, discovered Streptomycin in 1943 and is considered 

the first effective antibiotic treatment against tuberculosis [6]. Alt-

hough Streptomyces has been extremely useful as it produces a high 

number of compounds, the drug development success rate has contin-

ued to fall, reaching an all-time low 6.3% composite success rate in 

2022 [7]. This occurs because the same novel compounds have been 

rediscovered multiple times in similar strains of bacteria [5]. Since 

Streptomyces is one of the bacterial strains that has been used for such 

a long time, most of its bioactive compounds, such as lanthipeptides, 

terpenes, and type 1 polyketide synthases, have already been identified 

[5]. These compounds exhibit large antimicrobial and antifungal ac-

tivities, exacerbating their importance in the world of new antibiotic 

drug discovery  [8].  

Additionally, the constant rediscovery of the same bioactive com-

pounds creates a large demand for undiscovered compounds, and the 

need for new treatments will continue to grow [9]. The immense bur-

den of induced resistance exacerbates the need for new antibiotics and 

treatments. Although some bacterial strains can foster many biosyn-

thetic gene clusters (BGCs), like Streptomycin with 35, not all these 

products can be processed in laboratories as some may be silent gene 

clusters where they may require specific environmental cues such as 

stress conditions to “activate” [10]. The two main types of metabolites 

include primary and secondary. Primary metabolites are essential for 

an organism's survival, while secondary metabolites, which serve as 

enhancers such as defense mechanisms, are the ones harvested since 

the organism can live without them.  

Antimicrobial Resistance Challenges. Along with rediscovery, antimi-

crobial resistance (AMR) is one of the two greatest issues in identify-

ing novel drug compounds [2]. If the human body is treated with the 

same drug or antibiotic over time, germs develop the ability to defeat 

the drugs designed to kill them. To develop new antibiotics to combat 

AMR novel compounds need to be identified to create a brand-new 

drug. However, the process of drug discovery transcends beyond iden-

tifying novel compounds. As mentioned before, research and discov-

ery costs range immensely, taking 10 years to develop, often more [2]. 
After this process, drugs still need to go through clinical trials where 

they are tested through three main phases and can vary in time with an 

average of 10 years for most drugs [10]. 

The Role of Machine Learning in Drug Discovery. Discovering new 

natural product activities is extremely time-consuming, especially as 

the chance of rediscovering biosynthetic gene clusters increases after 

a new one is introduced. To combat this issue, machine learning mod-

els can predict bioactive molecules, reducing the amount of time spent 

repeating the same cycle [2]. Biosynthetic gene clusters (BCGs) are a



 

Figure 1. Machine learning method 
which includes the dataset for BCG’s (A) 

and natural product activities for the gene 
clusters (B) (Figure by A. Walker). 

group of two or more genes located closely together to encode a sec-

ondary metabolite [2]. To predict this new activity, a set of known 

BCGs and the natural products they produce are represented in a se-

quence [2] as seen in Figure 1. While not all drugs from machine learn-

ing are synthesized, the predictions are still important because not all 

drugs are derived from natural products. Some drugs are synthesized, 

which also addresses the unmet need for predictions. Therefore, Ma-

chine learning-guided discovery of bioactive compounds from care-

fully screened and purified bacterial strains will lead to a high poten-

tial of identified bioactive compounds. Through this study, the identi-

fication of these compounds will commence through bioactivity as-

says and metabolite isolation.  

MATERIALS AND METHODS.  

Bi-Phasic Extraction of Bacterial Growth Liquid-Liquid Extraction. 

A liquid-liquid extraction was performed to isolate compounds in the 

aqueous and organic phases to isolate metabolites for bioactivity as-

says. To prepare a sample for extraction, the supernatant was added to 

a beaker with as the aqueous layer. After this, the organic solvent, 

ethyl acetate, was added to the beaker. When these two phases were 

mixed, there were hydrophobic and hydrophilic compounds, making 

the hydrophobic compounds ultimately go towards the organic liquid 

phase. The beaker was then covered with aluminum foil, to avoid sol-

vent evaporation. To transfer compounds that reside in both phases, 

such as hydrophobic compounds, into the organic phase from the 

aqueous phase, the beaker was sonicated for 45 minutes with periodic 

stirring of the beaker every 10 minutes. Therefore, compounds from 

both phases would be thoroughly transferred. After the beaker had 

been sonicated, the phases went through separation again so com-

pounds would be extracted. To separate the phases, the mixture was 

transferred to a separating funnel, where the lower density liquid and 

the high-density liquid reside on the bottom of the funnel, separating 

as they did before the compounds were mixed. The purpose of sepa-

rating both layers again is to have distinct compounds from each 

phase. The organic layer and aqueous layers were collected in round 

separate flasks; after this, a layer of bubbles was formed at the solvent 

interface due to mixed hydrophobic and hydrophilic properties and 

was treated as a third layer, collected separately in its own flask. To 

fully extract the compounds, each round flask containing each phase 

was put into a rotary evaporator to concentrate metabolites through 

evaporating any ethyl acetate so only hydrophobic compounds remain. 

Once the organic layer had dried, acetonitrile was added to dissolve 

the sample, making it more suitable to use for an assay. To fully dry 

the mixture, the remaining liquid was transferred to a 50 μL falcon 

tube to dry in a speed-vac. The metabolites were stored in a -20 de-

grees Celsius freezer after done drying in the speedvac. 

Agar Plate Bio-Activity Assay. We utilized bioactivity assays to eval-

uate certain antimicrobial properties of extracted metabolites derived 

from natural products. To ensure full integrity of assay results, every 

step was done by an open flame to avoid contamination. In this assay, 

A Bacillus subtilis was selected from a fully grown liquid growth in a 

culture tube since it demonstrates high growth characteristics through-

out determining microbial inhibition. Bacillus subtilis was the one 

bacterium used in this process because it had very sensitive character-

istics against the antimicrobial compounds and was also one of the 

bacterium that was easy to culture [10]. The use of this bacteria ulti-

mately made it easier to get more consistent results as it can identify 

how effective specific metabolites are. We plated everything together 

and labeled each section of metabolites to spot specific placement and 

for future reference. To have sufficient bacterial coverage, 100 μL of 

Bacillus subtilis was pipetted onto the petri dish. A sterile spreader 

was then utilized to distribute the bacteria evenly across the agar plate 

so that there is a constant, even layer for the different metabolites from 

each layer to grow on. 5 μL of each extracted metabolites suspended 

in solution were pipetted onto each corresponding label. Additionally, 

5 μL of the solvent was utilized for inhibition as the control, and to 

ultimately distinguish effects with any solvent influences. After pipet-

ting the metabolites, the agar plate was then closed and stored face 

down in a solid incubator to eliminate any condensation that may reach 

the surface of the agar and disrupt growth results. The plate was mon-

itored daily for colony growth on areas where metabolites were pipet-

ted.  

Gel Electrophoresis Analysis of Polymerase Chain Reaction (PCR) 

Product. To identify DNA in bacteria, PCR was conducted to amplify 

the 16S rRNA gene which was used for sequences that tend to be spe-

cies-specific oriented. PCR is when the samples go through cycles of 

different temperature in order to separate DNA strands, anneal pri-

mers, then build brand new DNA strands. With these steps, numerous 

copies of DNA were made of the target gene which assists in the gene 

amplification.  

Pelleted bacterial cells were resuspended in the PrepMan solution and 

heated at 100 degrees Celsius to release the DNA. After this, the DNA 

is then combined with primers that are specific to the 16S rRNA gene 

and Taq DNA polymerase which is an enzyme that synthesizes brand 

new DNA strands. Over the time span of three hours, the PCR reaction 

amplified the DNA with the touchdown program in a thermocycler. 



 

 

We verified amplification through separated PCR products by gel 

electrophesis. This was done by preparing an agarose gel including 

SYBR safe stain which helped with visualization under UV light. To 

sort the DNA fragments and see which ones were bigger than the oth-

ers, the samples were run with a DNA ladder alongside them at 100V. 

To indicate the successful amplification of the gene that is targeted, 

bands were revealed under a UV light and demonstrate bands that were 

around 1500.  

RESULTS. 

Agar Plate Bio-activity Assay Growths. The metabolites and com-

pounds of each bacterial strain were tested against Bacillus subtilis. 

To determine the bioactivity of the metabolites produced by these bac-

teria, a bioactivity assay is a technique used to evaluate a specific 

strain's growth and to learn more about the strain. The key feature of 

a bioactivity assay is the inhibition zone, a clear circular area that sur-

rounds the antimicrobial agent. In figure 2A we see that there is a small 

zone of inhibition which measures the susceptibility of the bacteria 

around the spot the compounds were pipetted in. We verified this the 

most in figure 2B, where inhibition zones are prominent in the Org 1 

& Org 2 spots as well as its control of 25:75 ACN:H2O. In figure 2C, 

the only inhibition zone that is seen in this plate is around Org 1. 

Amplifying the DNA of Various Bacterial Strains. In Figure 3, an im-

age of a gel electrophoresis demonstrates the DNA amplification for 

bacterial strains using a PCR product made up of Polymorphospora 

rubra, Herbidospora sakaeratensis, Herbidospora cretacea, Herbi-

dospora galbida, Longispora albida, Longispora fulva and Long-

ispora urticae. We use a UV light, to show and represent DNA bands 

visually. Figure 3 demonstrates a DNA ladder that represents each 

DNA fragment present and is labeled with kilobases (kb) which essen-

tially references the size of each DNA fragment. Gel shows bands at 

1.5 kb indicating that the PCR was successful for each bacterial strain. 

Lack of smearing in the bands indicate purity of the DNA amplifica-

tion. With this, these results indicate novel bacteria strains that we can 

identify in future studies. 

DISCUSSION. 

The strains Polymorphospora rubra, Herbidispora cretacea, and Rhi-

zobium rhizogenes were selected for this study. The strains were 

grown and each of their metabolites were extracted and tested for bi-

oactivity, revealing differing levels of inhibition, growth, and bioac-

tivity. The machine learning algorithm demonstrated that strains with 

more predictions for biosynthetic gene clusters per genome were more 

favored. The machine learning method not only predicts the number 

of clusters but predicts the activity of the strain given their BGC pro-

file. The goal was to select strains based on their predicted activity, 

and incubation length due to the time constraints of the duration of this 

project. As a result, finding a balance of selecting strains that grew 

relatively fast, but also had a promising prediction according to the 

algorithm was a vital aspect. However, a strain may have many pre-

dicted BCGs, some of which may have already been discovered, in-

creasing the risk of rediscovery. It is more important to spend time 

researching strains that do not have many clusters that are identified 

within them since the stake of rediscovery tends to get higher as the 

number of identified BCGs increases. 

All agar bioactivity plates showed partial or low amounts of inhibition, 

which suggests a need to explore the effectiveness of the substances 

used in this study further. If the strains did not exhibit increased inhi-

bition across the plate, different conditions might be required to 

achieve maximum potential growth to achieve optimal metabolite ex-

pression from BGCs. Under the tested conditions, these strains may 

not effectively demonstrate their antibiotic activity, but other condi-

tions could reveal greater inhibition and growth. In the first assay, Pol-

ymorphospora rubra showed very little inhibition, which may indicate 

that the strain has low bioactivity and requires different conditions, 

such as alternative substances or extraction methods. In the second as-

say, Rhizobium rhizogenes, partial inhibition zones were demon-

strated, which means that the bacteria are somewhat effective towards 

the antimicrobial agent used. The third assay, with Herbidispora cre-

tacea, showed low growth and inhibition, similar to the second assay. 

Overall, while growth was minimal in this study, we conclude that is 

a promising endeavor and may benefit from testing more conditions.  

 

Figure 3. Gel Electrophesis image of various bacteria’s and their molecu-
lar weights.  

 

Figure 2. Solid agar plates with two solutions and one control. “Met 1” & “Met 2” represent methanol and is used in place of the aqueous phase (A). In 

addition to 72:25 H2O:ACN, 25:75 CAN:H2O is used for controls (A). “Org 1” and “Org 2” (blue) stand for the organic phase, “Aq1” & “Aq2” (orange) 
represent the aqueous phase (B, C). 72:25 H20:ACN is the control used (B, C). 



 

 

The hypothesis for this study verified that machine learning-guided 

discovery of bioactive compounds from carefully screened and puri-

fied bacterial strains will lead to the identification of novel bioactive 

compounds. The algorithm would ultimately determine whether or not 

a strain would have large amounts of predicted activities, and from the 

strains chosen they had a predicted activity of around 30 BGCs cumu-

latively. However, the results in this study did not align with this hy-

pothesis as limited amounts of inhibition were present throughout the 

three bacterial strains Polymorphospora rubra, Herbidispora creta-

cea, and Rhizobium rhizogenes. The hypothesis was not accurate as 

the machine learning algorithm predicted something different from the 

results, and this could be due to the certain methods or testing condi-

tions used which may not be completely optimal for the metabolites to 

have high activity in.  

Implications and applications. An imperative aspect in drug discovery 

lies unidentified compounds in unresearched bacterial strains. Alt-

hough the results of all three bacterial strains demonstrated low inhi-

bition levels, these new insights still count as new knowledge since it 

is learned to test these antimicrobial different conditions. These find-

ings are applicable as they influence future studies that could be per-

formed on these same strands and can inform those studies in altering 

certain cultivation conditions. For example, through lengthening peri-

ods of incubation this could overall enhance how novel metabolites 

are expressed through the bioactivity assays against certain microbial 

properties. Ultimately, resistant pathogens are slowly growing and ap-

plying this research to the future is imperative as the issue of AMR 

only increases with time. Therefore, the optimization of increasing in-

cubation times, or continuous streaking on plates would help enhance 

the expressed activity metabolites have. This study could also be an 

approach to begin conducting bioactivity assays differently. We iden-

tified the tested conditions were unsuitable with these strains. Experi-

mentations to know which assay method is best for all strains can be 

implemented so future research can further excel. We inferred that the 

improved methodology helps inform future studies with the goal of 

drug discovery in mind, shortening the time of compound discovery.  

FUTURE DIRECTIONS. 

To improve the discovery of bioactive compounds in all three strains, 

several future directions can be implemented to achieve higher inhibi-

tion and growth results. These include scaling up the growths for Rhi-

zobium rhizogenes and Herbidispora cretacea by increasing their in-

cubation time in order to  develop their metabolite expression to obtain 

a greater number of compounds during growth. Doing this would ad-

dress the number of limited compounds that were observed during pre-

vious assays. Previous microbial studies  showed microbial fermenta-

tion being scaled up, resulting in an increased yield of compounds that 

demonstrate bioactivity. With this, longer periods of incubation would 

assist in expressing a higher yield of bioactive compounds in this ex-

periment which addresses low inhibition. As low inhibition arose 

throughout all three bioactivity assays, another future direction would 

be streaking on plates as a useful tactic for better colony isolation and 

successful extraction. When each colony is more isolated and separate, 

this links with growth patterns that tend to be more defined and easier 

to analyze visually. The technique allows the individual colonies to 

grow without any type of interference with other colonies surrounding 

with close proximity. This ultimately minimizes the “competition” for 

every colony and helps it flourish on its own – also leading to more 

selective colony development. Another future aim would be reproduc-

ing these growths in higher volumes would allow the strains to react 

better to a higher dosage, leading to more refined effects. Scaling up 

these cultures would assist in higher inhibition as it would during in-

creased incubation periods, accuracy and responses would be more 

consistent as well since large fermentations have been proven to have 

more accurate results within bioactivity compounds. 

CONCLUSION. 

The objective of this experiment was to extract novel compounds from 

selected strains of bacteria using machine learning algorithms to aid 

in new drug discovery. The experiment combined bioactivity assays 

with machine learning-guided discovery. Although the algorithm pre-

dicted high bioactivity for these strains, the assays resulted in low in-

hibition and bioactivity due to the conditions tested. Overall, low col-

ony levels were observed, indicating either that the strains inherently 

have low bioactivity with few novel compounds to discover or that the 

conditions were not optimal for high inhibition results, which would 

lead to increased bioactivity detection. Polymorphospora rubra 

showed visual microbial growth, while Rhizobium rhizogenes and 

Herbidispora cretacea demonstrated low growth and inhibition. These 

results highlight the need for higher concentration levels or enhanced 

sterilization techniques to obtain more credible and significant results. 
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