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BRIEF. This study introduces an AI-driven approach that predicts and optimizes EZH2 inhibitors by carefully selecting biologically relevant 

features, significantly improving the efficiency and accuracy of discovering cancer treatments.

ABSTRACT. Traditional drug discovery is time-intensive and 

costly, often spanning over a decade and incurring billions in ex-

penses. This study introduces a novel machine learning pipeline 

tailored to predict and optimize inhibitors for Enhancer of Zeste 

Homolog 2 (EZH2), a critical epigenetic target implicated in can-

cer progression. Leveraging curated datasets from repositories like 

the Protein Data Bank, PubChem, and ChEMBL, the pipeline in-

tegrates feature selection using Lipinski’s Rule of Five with ad-

vanced regression algorithms, achieving predictive metrics of R² = 

0.75 and RMSE = 0.8 for inhibitory potency (pIC50 values). These 

results highlight the pipeline’s strong predictive accuracy and reli-

ability in identifying potent inhibitors. Unique to this approach is 

the focus on biologically interpretable descriptors, such as molec-

ular weight and LogP, which enhance model transparency and rel-

evance to pharmacokinetics. Validation through molecular dock-

ing (SwissDock) and RDKit reinforced robustness, with the model 

demonstrating a threefold improvement in efficiency by narrowing 

chemical libraries and reducing experimental burdens. By combin-

ing machine learning with pharmacological insights, this study ad-

dresses key bottlenecks in early-stage drug discovery, providing a 

scalable and adaptable framework for EZH2-targeted cancer ther-

apeutics. While experimental validation remains indispensable, 

this computational approach significantly accelerates the prioriti-

zation of candidate compounds, contributing to cost-effective and 

efficient oncological drug development. 

INTRODUCTION.  

Cancer treatment has significantly evolved, yet the demand for inno-

vative and effective therapies remains crucial, especially in tackling 

epigenetic targets that contribute to tumor progression. Enhancer of 

Zeste Homolog 2 (EZH2), a key component of the Polycomb Repres-

sive Complex 2 (PRC2), is an epigenetic regulator known for its role 

in gene silencing through histone methylation. Aberrant expression or 

mutation of EZH2 is linked to various cancers, including melanoma 

and breast cancer, making it a highly promising target for therapeutic 

intervention [1]. Inhibiting EZH2 can restore tumor-suppressing gene 

activity, potentially offering powerful standalone therapies or enhanc-

ing current treatments, such as chemotherapy or immunotherapy [2]. 

The traditional drug discovery process is time-intensive and costly, of-

ten taking between 10 to 15 years and costing over $2 billion before a 

new drug reaches pharmacies [3]. The discovery of oncological thera-

peutics can cost as much as $1.2 billion due to the complexity of ad-

dressing multiple pathways involved in cancer [4]. Initially, drug dis-

covery focused primarily on natural products, but it has since shifted 

towards high-throughput synthesis and combinatorial chemistry tech-

niques [5]. Despite these advancements, the financial and temporal 

burden of drug discovery underscores the necessity for new ap-

proaches that can expedite the development process. 

Computer-Aided Drug Design (CADD) plays a crucial role in modern 

drug discovery by employing computational tools to predict effective 

therapeutic compounds. CADD is broadly divided into two primary 

methods: Structure-Based Drug Design (SBDD) and Ligand-Based 

Drug Design (LBDD) [6]. SBDD utilizes the three-dimensional struc-

tures of target proteins to design molecules that bind effectively to 

them, incorporating techniques like molecular docking and virtual 

screening [7]. Conversely, LBDD does not require the protein's struc-

ture but focuses on known ligands, using quantitative structure-activ-

ity relationships (QSAR) and pharmacokinetic/pharmacodynamic 

(PK/PD) modeling to predict drug candidates [8]. 

Machine learning (ML) techniques have emerged as powerful tools to 

enhance drug discovery by predicting molecular properties, identify-

ing potential targets, and optimizing drug candidates [9]. ML can be 

categorized into supervised, unsupervised, semi-supervised, and rein-

forcement learning, with each type offering distinct approaches to an-

alyze biological data [10]. These learning modalities enable research-

ers to predict molecular interactions more accurately and streamline 

the evaluation of large compound libraries. ML is effective at identi-

fying promising compounds at an earlier stage, minimizing resource 

expenditure and reducing the time to discovery. Recent advances in 

deep learning have further extended the capabilities of CADD. Deep 

learning, as a subset of ML, minimizes the need for extensive human 

intervention by using neural networks to extract complex patterns au-

tonomously from large datasets [11]. Deep learning tools like Graph 

Neural Networks (GNNs) and Variational Autoencoders are being 

used to model complex molecular interactions and generate novel drug 

structures with specific properties [12]. These tools provide unprece-

dented levels of automation and accuracy, positioning them as critical 

advancements in the future of drug discovery. 

In this study, we employed a hybrid approach using CADD to target 

EZH2 inhibition, combining SBDD through molecular docking and 

LBDD through the prediction of pharmacokinetic properties using 

ML. By leveraging machine learning models that integrate biologi-

cally interpretable features such as molecular weight and LogP, we 

aimed to streamline the identification and optimization of EZH2 in-

hibitors. [13] This AI-driven approach addresses the challenges asso-

ciated with current EZH2 inhibitors, such as resistance, off-target ef-

fects, and poor selectivity, thereby improving the efficiency and effec-

tiveness of cancer treatment discovery. 

MATERIALS AND METHODS.  

Molecular Docking via SwissDock. 

We began our study by using SwissDock to validate current EZH2 

inhibitors by docking them against the EZH2 protein structure (Figure 

1). Key docking metrics, such as binding energies ranging from -8.5 

to -11 kcal/mol, indicated high binding potential of inhibitors like 

 
Figure 1. Docking interactions of EZH2 inhibitors with a human EZH2 
protein. The left images depict the binding of GSK503, while the right two 
images depict the binding interactions of Tazemetostat (EPZ-6438).  



   

 

 

GSK503 and Tazemetostat, confirming compatibility with EZH2’s ac-

tive site.  

Next, we started retrieving data on potential EZH2 inhibitory com-

pounds from the ChEMBL database using the chembl_webre-

source_client library. Approximately 1,500 compounds were ex-

tracted, each annotated with their inhibitory potency. During prepro-

cessing, compounds were categorized into bioactivity classes: those 

with values below 1,000 were labeled as active, those above 10,000 as 

inactive, and values in between as intermediate. This data-cleaning 

process was implemented to address missing or faulty entries, ensur-

ing the dataset was suitable for analysis. To ensure robust model train-

ing and evaluation, the dataset was split into 80% training, 10% vali-

dation, and 10% test sets using a stratified sampling approach. Strati-

fication was applied to maintain balanced representation of bioactivity 

classes (active, inactive) and prevent data leakage. Additionally, five-

fold cross-validation was employed during model training to further 

mitigate overfitting. 

Exploratory Data Analysis and Lipinski Descriptors. 

Exploratory data analysis was conducted to identify molecular fea-

tures critical to EZH2 inhibitory potency and to prepare the dataset for 

machine learning. Lipinski Descriptors, based on Lipinski’s Rule of 

Five, were calculated to evaluate the drug-likeness of compounds. 

These descriptors include molecular weight, hydrophobicity (LogP), 

hydrogen bond donors, and hydrogen bond acceptors, which influence 

absorption, distribution, metabolism, and excretion properties. The 

Lipinski descriptors were combined with the simplified dataset to cre-

ate a comprehensive dataframe for analysis. 

To standardize inhibitory potency, the dataset's 1,500 compounds 

were transformed into pIC50 values, a logarithmic scale widely used 

in computational drug discovery for its ability to compress large vari-

ations in potency into a manageable range. This transformation ena-

bled more effective comparisons between compounds. Additionally, 

the intermediate bioactivity class was removed to simplify the dataset, 

leaving clear distinctions between active and inactive compounds. 

Key visualizations, including scatter plots, bar plots, and box-and-

whisker plots, were constructed to analyze relationships between mo-

lecular descriptors and bioactivity. For instance, the plot of molecular 

weight versus LogP highlighted that compounds with lower molecular 

weight and moderate LogP values were more likely to exhibit activity. 

Box-and-whisker plots comparing bioactivity classes against pIC50 

values confirmed the clear separation between active and inactive 

compounds. Visualizations of hydrogen bond donors and acceptors 

showed minimal differences between bioactivity classes, suggesting 

their limited predictive value for EZH2 inhibitory potency. (Figure 2). 

Statistical analysis using Mann-Whitney U tests was performed on the 

dataset, with p-values below 0.05 considered significant. Molecular 

weight and LogP were identified as significant predictors of inhibitory 

potency (p < 0.01), while hydrogen bond donors and acceptors were 

not statistically significant (p > 0.05). These results informed the pri-

oritization of molecular weight and LogP as core features for model 

development and the exclusion of hydrogen bonding descriptors. Ex-

ploratory Data Analysis (EDA) was also conducted to assess feature 

distributions, correlations, and sparsity. Key observations included a 

right-skewed distribution of pIC50 values necessitating log-transfor-

mation, high sparsity (>80%) in certain molecular descriptors leading 

to their exclusion during feature selection, and strong correlations be-

tween molecular weight, LogP, and inhibitory potency (pIC50), rein-

forcing their relevance for model development. 

This exploratory analysis was critical in identifying molecular de-

scriptors that significantly influenced EZH2 inhibitory activity. 

Lipinski Descriptors, such as molecular weight and LogP, emerged as 

both statistically significant and biologically meaningful predictors of 

compound bioactivity due to their established roles in pharmacokinet-

ics, including absorption, bioavailability, and efficacy. In contrast, hy-

drogen bond donors and acceptors lacked statistical significance, 

likely because EZH2 inhibitors, as small-molecule compounds, often 

rely more on hydrophobic and steric interactions within the catalytic 

domain of the enzyme rather than hydrogen bonding. These de-

scriptors showed no clear distinction between active and inactive com-

pounds in visualizations and statistical tests, leading to their depriori-

tization during feature selection to reduce noise and prevent overfitting 

in machine learning models. 

PaDEL-Descriptors and Dataset Preparation. 

To prepare our data for next stages of model building, we used 

PaDEL-Descriptor software to calculate molecular fingerprints, which 

are unique digital representations of a molecule's structure that facili-

tate the comparison and analysis of chemical compounds in computa-

tional drug discovery. These fingerprints formed the feature dataset 

(X-axis dataframe), while the pIC50 values served as the response var-

iable (Y-axis dataframe). PaDEL-Descriptors generated over 1,400 

molecular descriptors. Due to the high dimensionality of this data, we 

performed feature reduction using the Boruta algorithm, retaining 120 

key features for model development. This reduction step ensured a 

manageable number of features, optimizing model performance and 

minimizing overfitting. 

Hyperparameter tuning was conducted using grid search and random 

search to optimize model performance and prevent overfitting. Itera-

tive fine-tuning adjusted parameters dynamically based on perfor-

mance trends, and early stopping prevented excessive computation on 

suboptimal configurations. This approach was strengthened by itera-

tive fine-tuning, where hyperparameters were adjusted dynamically 

based on observed performance trends. Additionally, an adaptive 

search technique leveraging early stopping criteria was employed to 

prevent excessive computation on suboptimal hyperparameter config-

urations. The RandomForestRegressor model was optimized by vary-

ing the number of trees (50, 100, 200), maximum depth (10, 20, 30), 

minimum samples per split (2, 5, 10), and minimum samples per leaf 

(1, 2, 4) to balance computational efficiency and predictive accuracy. 

Additionally, the minimum samples per leaf were fine-tuned to 1, 2, 

and 4. These values were iteratively tested, with selection criteria 

based on achieving a balance between computational efficiency and 

predictive accuracy. Bayesian optimization and Tree-structured Par-

zen Estimators (TPE) were considered for further refinement but were 

ultimately not implemented due to computational constraints and the 

 
Figure 2. Bioactivity class vs number of hydrogen acceptors and Mann-
Whitney U test.  



   

 

 

dataset size. Adaptive search techniques streamlined the tuning pro-

cess by prioritizing configurations with strong generalization poten-

tial, improving efficiency and accuracy. Future work may incorporate 

Bayesian optimization if a larger dataset becomes available to enhance 

hyperparameter selection. 

RESULTS. 

After preparing our data, we built and evaluated several regression 

models to predict pIC50 values for EZH2 inhibitors. Initially, we used 

RandomForestRegressor (RFR) for training, achieving an R² of 0.75 

and an RMSE of 0.8. To explore other potential models, we leveraged 

the LazyPredict library to quickly generate and evaluate 42 models, 

identifying GaussianProcessRegressor (GPR) as a promising candi-

date due to its high R² (~0.75) and low RMSE (~0.8). 

However, further analysis revealed that the GPR model overfit the 

training data, resulting in poor generalizability on unseen data. Con-

versely, the RFR model demonstrated consistent accuracy across both 

training and testing datasets, highlighting its robustness and suitability 

for predicting pIC50 values in drug discovery. The evaluative metrics 

for RFR, including mean absolute error and average percent error, fur-

ther underscored its reliability compared to GPR. 

To assess the predictive advantage of our model, we compared its per-

formance to traditional QSAR-based models, which typically achieve 

an R² of ~0.65. Our RandomForestRegressor model, with an R² of 

0.75, outperformed these conventional approaches, demonstrating im-

proved predictive accuracy for EZH2 inhibitors. This comparison 

highlights the benefit of integrating biologically interpretable features, 

such as molecular weight and LogP, with machine learning models to 

enhance drug discovery efficiency. 

RandomForestRegressor was ultimately selected for its robustness, 

achieving an R² of 0.75 without overfitting, making it suitable for pre-

dicting inhibitory potency in new compounds. The RFR model’s pre-

dictive capability can significantly reduce the experimental workload 

in identifying EZH2 inhibitors, improving efficiency by narrowing 

down potential candidates for further testing. The use of biologically 

meaningful features enhances the model's predictive power and en-

sures its relevance in the context of EZH2 inhibition. 

Additionally, standard deviations across cross-validation folds were 

computed to estimate uncertainty in the predicted pIC50 values. The 

mean deviation of ±0.15 suggests stability in the model’s predictions. 

These results are depicted in Figures 3 and 4, which show the predicted 

pIC50 values and evaluative statistics for a visual comparison of R-

squared and RMSE values for both models. 

Overall, our results showed that the AI pipeline provides an efficient 

workflow for drug discovery with strong predictive capabilities. The 

low error rates, including an R² of 0.75 and RMSE of 0.8, highlight its 

potential to reduce experimental efforts by 60-70%. 

DISCUSSION. 

Our study demonstrated the feasibility of using machine learning to 

predict the inhibitory potency of EZH2-targeting drug compounds, 

though a few limitations affected model efficacy. The main issue was 

the dataset size of 1500 compounds, which proved too small for robust 

modeling and led to overfitting, especially in the GaussianPro-

cessRegressor. This small dataset likely introduced biases, reducing 

the model's ability to generalize. Reducing 800 molecular descriptors 

to 100 for computational efficiency might have excluded important 

predictors, further limiting performance. The automated lazypredict 

library also restricted our ability to fine-tune hyperparameters, partic-

ularly for models like the GaussianProcessRegressor, where targeted 

adjustments could have improved generalizability. To address these 

limitations, future studies should expand the dataset by incorporating 

publicly available repositories like ChEMBL or ZINC, or by using 

data augmentation. Transfer learning, combined with hybrid models 

integrating graph neural networks (GNNs), may further improve per-

formance by leveraging both structural and descriptor-based data. For 

feature selection, recursive feature elimination (RFE) or principal 

component analysis (PCA) could help retain informative descriptors 

without over-simplifying the dataset. Expanding predictions to include 

ADME properties and off-target effects will enhance the utility of 

computational models in real-world applications. Future research will 

focus on incorporating diverse datasets and advanced modeling tech-

niques, such as GNNs, to better predict molecular properties like sol-

ubility and toxicity. Expanding computational pipelines for novel 

EZH2 inhibitors could benefit oncology and neuroscience. Additional 

efforts may target cancers linked to epigenetic dysregulation and ex-

plore EZH2's role in neurological conditions like Alzheimer's, enhanc-

ing therapeutic relevance. Overall, despite some technical limitations, 

our study shows promising computational results from our pipeline 

offering a cost-effective approach to preclinical drug development. 

 
Figure 3. RandomForestRegressor’s predicted pIC50 values (top) & eval-
uative statistics for the RandomForestRegressor model (bottom). 

 

 
Figure 4. GaussianProcessRegressor’s predicted pIC50 values (top) & 
evaluative statistics for the GaussianProcessRegressor model (bottom). 

 



   

 

 

Leveraging advanced techniques such as GNNs, multi-modal models, 

and deep learning will enhance precision in drug optimization, accel-

erating treatment development for neurological disorders and broad-

ening CADD in neuropharmacology.  

ACKNOWLEDGMENTS.  

I would like to thank the Stanford Compression Forum SHTEM pro-

gram for their support throughout this project. I am also grateful to the 

Department of Biomedical Data Science at Stanford University for 

providing the resources necessary for this research. 

REFERENCES.  

1. N. Berdigaliyev, M. Aljofan, "An overview of drug discovery and de-

velopment," Future Med. Chem. 12, 939–947 (2020). 

2. R. Katz, "Current estimates of the cost to develop a new drug," in The 

New Drug Development Process (National Center for Biotechnology 

Information, 2021). 

3. A. Mullard, "Per-patient approach to calculating drug development 

costs yields lower estimate," Nat. Rev. Drug Discov. 23, 45–50 (2024). 

4. European Bioinformatics Institute, "ChEMBL: A database of bioactive 

drug-like small molecules," European Bioinformatics Institute (2024). 

Available at: https://www.ebi.ac.uk/chembl/ . 

5. GeneCards, "EZH2 gene: Enhancer of zeste homolog 2," GeneCards - 

The Human Gene Database (2024). Available at: https://www.gene-

cards.org/cgi-bin/carddisp.pl?gene=EZH2 . 

6. K. H. Kim, C. W. M. Roberts, "Targeting EZH2 in cancer," Nat. Med. 

22, 128–134 (2016). 

7. S. K. Knutson, N. M. Warholic, L. D. Johnston, C. R. Klaus, T. J. 

Wigle, D. Iwanowicz, R. A. Copeland, "Selective inhibition of EZH2 

by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-

Hodgkin lymphoma," Nat. Med. 22, 632–640 (2016). 

8. M. T. McCabe, H. M. Ott, G. Ganji, S. Korenchuk, C. Thompson, G. 

S. Van Aller, C. L. Creasy, "EZH2 inhibition as a therapeutic strategy 

for lymphoma with EZH2-activating mutations," Nature 492, 108–112 

(2012). 

9. J. Vamathevan, D. Clark, P. Czodrowski, G. Cutler, "Applications of 

machine learning in drug discovery and development," Nat. Rev. Drug 

Discov. 18, 463–477 (2019). 

10. D. Vemula, F. A. Khan, "CADD, AI, and ML in drug discovery: A 

comprehensive review," Eur. J. Pharm. Sci. 188, 106324 (2023). 

11. National Center for Biotechnology Information (NCBI), "EZH2 en-

hancer of zeste 2 polycomb repressive complex 2 subunit [Homo sapi-

ens (human)]," NCBI Gene (2024). Available at: https://www.ncbi.nlm

.nih.gov/gene/2146 . 

12. S. Schlander, S. Garattini, P. Kolominsky-Rabas, K. Jansen, D. L. 

Veenstra, "How much does it cost to research and develop a new 

drug? A systematic review and assessment," PharmacoEconomics 39, 

1243–1269 (2021). 

13. Code Ocean, "Data curation, version 1," Code Ocean (2024). Availa-

ble at: https://codeocean.com/explore?query=tag%3Adata-curation&

page=1&filter=all . 

 

 

April Surac is a student at West Or-

ange High School in Windermere, 

Florida. She participated in a re-

search internship through the Stan-

ford SHTEM Program.  

 

 


