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BRIEF: Through an in-depth statistical analysis of kidney pathology, it’s revealed that aged kidneys have abnormalities targeted towards vital 

afferent/efferent pathways, with another lesion being evaluated by an AI model.

ABSTRACT. With the rise of digital pathology and analysis within 

medical fields, the large-scale analysis of tissue samples has been 

explored, even being tested in conjunction with AI, primarily CNNs 

(Convolutional Neural Networks). In renal pathology, diseases seem 

to affect older people at a more severe rate than younger people. In 

this research, the renal pathology between aged and middle-aged 

kidneys is analyzed with the use of a WSI (Whole Slide Image) 

dataset that was thoroughly annotated (In QuPath) for 3 lesions: 

intimal fibrosis, hyalinosis, and afferent/efferent hyalinosis. In 

addition, an adapted U-Net Segmentation model (CNN) named 

“Tiki-Taka Net” was evaluated on the pathological dataset. It was 

found that the aged WSIs contained a significantly higher occurrence 

of (p = 0.0035) afferent/efferent hyalinosis, than middle-aged WSIs. 

It was found that the lesional area was significantly greater (p < = 

0.001) in the fibrotic areas versus the hyalinosis areas. Between the 

control and aged group, the control group had a greater area of 

hyalinosis (p < = 0.05). Clinical data was used to analyze the 

differences in renal function, revealing the control group had 

significantly greater Creatinine Clearance compared to the aged 

group. Tiki-Taka Net had a mask accuracy of 71% under a dataset of 

only 84 WSIs. CNNs are observed to be effective at identifying 

lesions. Ultimately, though aged organs are thought to be drastically 

more susceptible to disease than younger organs, it’s found in this 

research that disease concentrations vary a minimal amount outside 

of afferent/efferent hyalinosis. 

INTRODUCTION.  

From Physical to Digital Pathology. 

The evaluation of tissue at a microscopic level, such as in the kidney, is 

vital for pathologists in order to diagnose a patient and determine 

possible causes of the disease. Within the kidney there are various 

lesions that must be evaluated such as narrowed or widened glomerular 

vessels [2]. Renal pathologists, who diagnose diseases in the kidney, 

historically have used methods like light microscopy, electron 

microscopy, immunofluorescence, and immunohistochemistry to 

diagnose a patient before sending information over to a team of 

nephrologists for transplant. Pathology, going back to its origins, always 

had a physical means to its ends. Though, as technology has progressed, 

its potential in the field of medicine has been both implemented and 

hesitantly evaluated. 

As of recent, renal pathology has been adapted into a digitized format 

known as Whole Slide Imaging (WSI). It’s done through a process that 

turns a biopsy of tissue into 2D slices of tissue pathology. The 

digitization of pathological slides facilitates a more permanent storage 

of data pivotal to a patient's diagnosis and enables a more thorough 

statistical analysis of diseased areas [1]. With the application more 

extensively of WSI, this has the potential to accelerate the diagnosis 

process of pathologists, making screening immediate. The trends 

identified in such analyses could not only be used to help with the 

prediction of disease in a singular patient, but also with predictions of 

clinical outcome in other relevant cases [3]. 

Rangan and Tesch describe how with the advancement in image analysis 

technology, the quantification of many things at the microscopic level is 

possible. They lay the foundation of how to effectively analyze an image 

and quantify results which can lead to identification of causes of lesional 

buildup in some pathological images. However, a big limitation to the 

method of image analysis is the time it consumes, limiting its use in 

exigent circumstances [3]. 

Use of AI in Pathology. 

To counter this, statistical analysis can be expedited and become more 

accurate with the utilization of image classification models. U-Net, a 

convolutional neural network, is specifically a biomedical image 

segmentation model that can capture a medical image and classify every 

pixel rebuilding it into the classified image [4]. This model has been a 

notable example of how AI is able to assess medical images by pixel and 

reveal pivotal information through a series of neural network layers. 

However, there still remains uncertainty about whether or not 

pathologists should rely on AI to identify lesions, being both an ethical 

question and question based on the accuracy of AI. 

Measuring Kidney Degradation. 

The catalyst for kidney degradation is up to debate for many researchers. 

Many suggest that it is due to elderly kidneys being more susceptible to 

diseases such as diabetes, while others argue it may be due to the 

structural changes that occur as a kidney ages [5]. With aging there are 

changes to the arterial intima (innermost layer of blood vessels) that may 

stop the kidney from transporting substances. efficiently. 

In my research, I explore the lesional differences between aged and 

middle-aged kidneys with the use of WSI in order identify trends that do 

or don’t appear between these demographics. Specifically, the lesions 

analyzed were intimal fibrosis in general vessels, hyalinosis in general 

vessels, and hyalinosis in afferent/efferent vessels. Organs 

fundamentally become less effective as they age. The kidney is an organ 

that may experience different concentrations of lesions in different 

locations, perhaps due to age. With the statistical analysis potential of 

WSI I identified trends that arise in lesional concentrations between 

middle aged and elderly kidneys. 

Furthermore, I tackle the uncertainty of using AI models for pathology, 

by evaluating their accuracy and efficiency on identifying intimal 

fibrosis within a WSI, using a personally developed model based on the 

credible U-Net model. This may expedite the process by which statistical 

analysis is done and eliminate human error, resolving AI as an assistive 

tool to be used by pathologists when determining clinical outcome. 

MATERIALS AND METHODS.  

Dataset. 

To advance with the statistical analysis, a dataset of 20 WSIs from 20 

patients was obtained from the Department of Pathology, Microbiology, 



 

   

 
and Immunology at Vanderbilt University. 10 of the WSIs were from the 

aged group having a mean age of M = 71.8. The other 10 WSIs were for 

the middle-aged group, control group, having a mean age M = 58. The 

ages of the group were significantly different, using a 2 tailed unpaired 

T-Test. (p = 0.00001). Each WSI was annotated for 2 vascular 

components. These components were afferent/efferent arteries found 

near glomeruli (Fig. 1). Another component was the arteries found 

throughout the whole kidney. In the afferent/efferent arteries, hyalinosis 

was annotated automatically adding it to the tally for lesional arteries 

with the use of QuPath. For the “regular” arteries, they were annotated 

for hyalinosis and intimal fibrosis (Fig. 1). The data on total normal 

arteries and lesional arteries for each WSI was compiled into a table. 

Statistical Analysis. 

3 major columns were added from the initial tallying of fibrotic vessels 

and vessels with hyalinosis (Fig. S1). First, a column for the percentage 

of intimal fibrosis among all vessels in the WSI was created. Then a 

column for the percentage of hyalinosis and afferent/efferent hyalinosis 

was created. Percentages were calculated through the division of the 

total vessels by the lesions corresponding to the totals. Two Tailed 

Unpaired T-Tests were then run to compare between the aged and 

control group percentages. From QuPath, data was additionally exported 

on lesional areas by exporting the area sizes of the annotations. Graphs 

were then produced with the whole dataset through the use of Prism 

(Data analysis software). 

Clinical Data. 

A datasheet of relevant clinical data (Fig. S2) on renal function for each 

patient was provided by the department under which this research is 

being done. Renal function was measured by Serum Cr. (Level of 

Creatinine in Blood), BUN (Blood Urea Nitrogen), Cr. Clearance 

(Measures Rate of Filtering of Creatine in Blood), and Glucose Level 

(Amount of Glucose in Body). All of these measurements can help to 

evaluate the condition of the kidney as it filters through creatine, 

glucose, nitrogen, and other bodily compounds. This dataset was utilized 

to reveal any significance in the differences between the aged-group and 

control group’s renal function. The data was split into 7 columns, which 

detailed the age, gender distribution, Serum Cr., BUN, Cr. Clearance, 

and Glucose levels of each patient. There was a significant difference in 

renal function in the Cr. Clearance, indicating the control group had 

greater functioning in the Cr. Clearance. The age was significantly 

different. 

Tiki-Taka Net.  

I adapted an untrained U-Net model architecture (Fig. S3) in PyTorch 

with major adjustments to the architecture of the model and image size 

taken. Adjustments include adjusting input and output channels to 

expedite training speeds while decreasing the image size. There is also 

an increase in the amount of layers in my AI model to make up for the 

decreased image size, from 572 pixels squared to 320 pixels squared. 

With a lack of pixel features for the model to loop through, an increase 

in the complexity of the model was necessary to produce optimal results 

on the limited dataset. Training parameters were also heavily modified 

to increase accuracy of the model within 20 Epochs.  

Training Dataset. 

I created a training dataset consisting of 84 images of intimal fibrosis 

found in the middle-aged group (n = 61) and elderly group (n = 23). Each 

image was annotated in QuPath to create an ROI (Region of Interest). 

This ROI was then transformed into a binary, semantic segmentation 

mask with the use of the QuPath built-in script editor. Semantic 

segmentation takes an image and assigns a class, in this case being the 

intimal fibrosis or background, to each pixel. Each pixel is color coded, 

traditionally with black and white, hence a binary mask (Fig. 2), to 

segment an image. The dataset was then organized into two separate 

folders, one labeled “Images”, and another “Masks” under a broader 

directory named “ObjectDetection”. “Images” were saved as JPEG files 

while “Masks” were saved as PNG files. 

Training Parameters. 

The images from the dataset were trained for 100 Epochs (cycles through 

images). The optimizer used was AdamW, and the loss function 

(evaluates error in model) was BCEwithoutLogitsLoss. For the 100 

Epochs, the batch size (images in each epoch) was 2, with a learning rate 

(how quick a model defines a trend) of 0.00007. Data augmentation was 

kept to a minimum, with the removal of horizontal flips in the testing 

period. 

Testing for Accuracy. 

To test the accuracy of this semantic segmentation model on the images 

of intimal fibrosis, loss per epoch was tracked for both Training and 

Validation loops. Training pixel accuracy was also tracked for 100 

Epochs. Learning parameters were fine-tuned to optimize efficiency of 

the AI model. All records of accuracy were then graphed initially with 

matplotlib package (Fig. 3). 

RESULTS. 

Lesional Percentages. 

Between the control and aged group there was extremely minimal 

variation in the percentage of intimal fibrosis (Fig. S4). The p-values 

were not significant and visually they average approximately the same 

percentage. 

Moreover, the aged and normal group no significant difference between 

the hyalinosis percentage is observed in non-afferent/efferent vessels, 

though the control group does have a greater percentage (Fig. S5). There 

are multiple outliers in each group for this percentage, minimizing 

significance. 

Within afferent/efferent blood vessels, the aged group has significantly 

(p <= 0.01) greater hyalinosis percentage. There are several outliers in 

 

Figure 1. Annotations of lesions in regular vessels and afferent/efferent 

vessels 

 

Figure 2. Example of Tiki-Taka Net Segmenting Image  



 

   

 

the higher percentages for the aged group to note, suggesting that some 

kidneys may experience a greater lesional percentage based on a 

currently unknown factor. 

Area of Intimal Fibrosis versus Area of Hyalinosis. 

The fibrotic area is consistently significantly greater than the area of 

hyalinosis in both groups (Fig. S6). Fibrosis usually occurs at a far 

greater scale than hyalinosis, so this is an expected result. Between the 

control and aged group, there is a significantly (p <= 0.05) greater area 

of hyalinosis in the control group. The younger group is more inflicted 

with hyalinosis in general versus the aged group, unexpectedly. 

Accuracy and Loss of Tiki-Taka Net. 

Within 20 epochs the accuracy of Tiki-Taka Net had an accuracy of 

approximately 71%. The training and validation started to plateau at 0.1 

and 0.17 loss respectively.  

DISCUSSION. 

Though renal function does decline in the aged group there is a minimal 

7% difference in hyalinosis concentration in non-afferent/efferent blood 

vessels and no statistically significant difference in intimal fibrosis 

concentration between the control and aged group. This suggests that 

there is less drastic change in disease build up as one’s kidney ages, 

going against many experts' beliefs. However, there is a significant 

difference in hyalinosis percentage in afferent/efferent vessels between 

these two groups. The aged group experiences a significantly greater (p 

< 0.01) amount of hyalinosis in these specific blood vessels that connect 

to the glomeruli, having approximately 15% more afferent/efferent 

hyalinosis (Fig. 4). Though the amount of the disease varies little 

between these groups, the type of blood vessels getting targeted varies, 

suggesting that aged kidneys may suffer from lesions in more vulnerable 

locations. In addition, we see that the control group has a significantly 

greater area of hyalinosis than the aged group (Fig. S6), yet the renal 

function is still greater. This further extends the idea that aged kidneys, 

though having a similar lesion concentration as younger, middle-aged 

kidneys, are threatened more due to the types of blood vessels targeted. 

This suggests a priority on the location of lesions rather than quantity, 

which provides valuable insight to pathologists for more factors that 

contribute to clinical condition. Pathologists may be able to prioritize 

targeted arteries during pathological procedures in order to give 

accelerated diagnoses, bringing pivotal information to a patient’s 

condition. The implications of these results, however, may need to be 

supported by a larger dataset to solidify major conclusions. 

Regarding the potential of AI as a tool to automate statistical analysis of 

WSIs, the accuracy of Tiki-Taka Net’s semantic segmentation of intimal 

fibrosis suggests AI can operate as an assistive tool in the domain of 

pathology. With a dataset housing only 84 WSIs, Tiki-Taka Net was able 

to achieve 71% accuracy (Fig. S7), illustrating the ability AI has even 

with limited data. With the limitations in the dataset’s size, however, the 

validation loss consequently had a higher loss than the training loss (Fig. 

3). This is due to the AI model training on the same images extensively. 

This opens a new pathway to further expedite the statistical analysis of 

tissue with AI based automation. 

CONCLUSION. 

Conclusion. 

The power of statistical analysis here to make inferences about clinical 

condition, in relation to primary factors such as age, is exemplified by 

the results in this statistical analysis. WSI, being the core of this analysis, 

reveals the ability to identify novel trends due to the modernization of 

pathology. In conjunction with assistive AI technologies, diagnoses on 

a patient’s health can be expedited with long term training of 

pathological AI models. 

Future Research. 

A future direction within this research would be the development of a 

more extensive instance segmentation-based AI model. An instance 

segmentation model could not only classify individual pixels but also 

predict the amount of objects in a given class. If applied to Tiki-Taka 

Net or U-Net’s capabilities this would allow AI to count how many 

vessels with intimal fibrosis there are in an image expediting the process 

of statistical analysis. A more extensive model may contain more classes 

for vessels in general, and various other lesions like hyalinosis in 

different areas. A less extensive model may also be able to prioritize 

certain arteries to identify and analyze, allowing for specific conditions 

to be diagnosed faster. This may include prioritizing afferent/efferent 

arteries which have been revealed to have a greater amount of hyalinosis 

in aged kidneys. In addition, a larger dataset of images above the 84 used 

in this paper would benefit the accuracy of the model to be sufficient for 

medical analysis. This would allow for the automation of statistical 

analysis, previously done in a lengthy time-period, increasing the 

feasibility of using WSI data in more urgent scenarios. Research in this 

direction would help to make AI an assistive technology for pathologists 

to explore trends that may arise that previously could not be determined, 

statistically, such as the connection between age and lesional location. 

SUPPORTING INFORMATION. 

Supporting information includes the clinical dataset used to compare the 

kidney groups, a supporting visual of the U-Net architecture and its 

 

Figure 3. Loss over Epochs. First 20 Epochs the Training and Validation Loss 

are more similar, yet validation loss is more volatile. At the end of 100 Epochs, 

training loss hits approximately 0.1, while validation loss plateaus at 0.17. 

 

Figure 4. Percentage of Afferent/Efferent Hyalinosis. P-value = 0.0035. Aged 
group experienced significantly greater hyalinosis in afferent/efferent blood 

vessels than the control group. [Normal: ~5%; Aged ~ 20%] 



 

   

 
layers, the lesional quantification dataset, an accuracy graph per Epoch 

of the Tiki-Taka Net model, and graphs with insignificant lesional 

comparisons and lesional area comparisons. 
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