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BRIEF. We compare the 7-Simul and 7-Simul Flip algorithms for solving the Rubik’s clock, showing that they are faster for 74.7% and 25.3% of 

scrambles, respectively. 

ABSTRACT. In this paper, we compare the two best algorithms 

for the Rubik's Clock: 7-Simul and 7-Simul Flip. Both methods 

have been adopted by world-class clockers and there has been on-

going debate about which algorithm is faster. Using a new formal 

model for the Rubik’s Clock, we identify a key property of clock 

scrambles, which enables us to determine the faster method for any 

given scramble. We then formally derive that 7-Simul is faster than 

7-Simul Flip for 74.7% of scrambles, whereas 7-Simul Flip is 

faster for the remaining 25.3% of scrambles. These findings offer 

valuable insights for competitive speed clockers, allowing them to 

adaptively select the optimal method based on the characteristics 

of a given scramble. 

INTRODUCTION.  

Invented by Erno Rubik in 1988, the Rubik’s Clock is the most unique 

puzzle in competitive speedcubing [1]. The clock is a puzzle that con-

sists of 18 dials across both faces, 9 on the front and 9 on the back. 

Each dial acts like an hour hand of a clock, having 12 possible posi-

tions mimicking the 12 hours on a clock. Initially, the dials are scram-

bled into a random position. The clock is solved when all dials point 

towards the 12 o’clock marking at the top of each dial as seen in Figure 

1. The positions of these dials are changed by turning one or more of 

the four turn dials on the corners of the puzzle. The clock also has four 

pins which are either in the up state or down state. These pins deter-

mine which sets of dials are affected by the turning of the turn dials.  

The clock has traditionally been solved with the Flip Method [2-3]. 

Improving upon this basic method, a group of clockers including 

Tommy Cherry invented a method called 7-Simul in November 2022 

[4-5]. 7-Simul quickly became the method of choice for leading clock-

ers and was used to set numerous world records. In June 2023, Ben 

Tibbetts showcased a method with a brand-new idea, adding one as-

pect of 7-Simul to the Flip method [6]. This idea inspired the invention 

of 7-Simul Flip in October 2023 by Alexander Moscibroda, Benjamin 

Paul, Eddie Artze, Fengyuan Lou, and Jaidon Lin as an alternative to 

7-Simul, incorporating one aspect of the Flip method while retaining 

the core structure of 7-Simul [7-8]. Currently, 7-Simul and 7-Simul 

Flip are the two methods used by world-class clockers. Some scram-

bles are faster with 7-Simul while others are faster with 7-Simul Flip, 

and there has been significant debate about which of the two methods 

is ultimately the better one.  

In this paper, we shed fundamental insight into this question. Using a 

new formal model for clock solves using the 7-Simul and 7-Simul Flip 

methods, we derive the exact property of a clock scramble that char-

acterizes whether 7-Simul or 7-Simul Flip is faster. By further show-

ing the likelihood at which a random scramble exhibits this property, 

we can show that 7-Simul is faster for 74.7% of scrambles, while 7-

Simul Flip is faster for the remaining 25.3% of scrambles. Our results 

have practical application for competitive speed clockers. Any clocker 

who masters both methods may choose to apply the respectively faster 

method for a given scramble depending on whether the scramble ex-

hibits the property. Indeed, this dual-method approach has recently 

gained popularity among world-class clockers.  

 

TERMINOLOGY & ALGORITHMS.  

Terminology.  

In this section we introduce the terminology needed to analyze the al-

gorithms in the later sections. Each change in a dial’s position by one 

“hour” is called a tick. A move is when one turn dial is turned by any 

number of ticks, usually with the index finger. A particularly important 

type of move are d-moves: a d-move is done on one of the two turn 

dials at the bottom corners of the puzzle. D-moves are done with the 

pinky finger and require a slight regrip to perform, making them par-

ticularly hard and time consuming to execute. For world-class clock-

ers, d-moves typically take 1.2 to 2 times to execute than normal 

moves. A flip is the act of vertically flipping the whole clock. A flip 

allows the clocker to see the dials positions on the back face of the 

clock. A scramble is a random position of dials that is applied to a 

clock. A solve begins with a scrambled clock and is complete when 

the clocker turns all dials to the 12 o’clock markings. A solve is carried 

out in the following manner. First, the clocker has inspection, which 

is a 15-second period during which the clocker can examine the scram-

ble and plan the moves. After inspection, the clock is placed on its 

side. Then, the clocker holds down the surface of the timer, releasing 

it to start the timer. The clocker then solves the clock as quickly as 

possible. Finally, the clocker presses down the surface of the timer 

again to stop it.  

Algorithms.  

Historically, the clock has been solved using the flip method, where 

one dial is solved per move [2-3]. Out of the 18 dials, the four corner 

dials on the clock are connected between the front and back face, so 

there are in fact only 14 individual dials on the puzzle. Since there are 

14 dials, the flip method requires a maximum of 14 moves to solve the 

 

Figure 1. One face of the Rubik’s clock in its solved state, with all dials 
pointing to the 12 o’clock marking. A clock is considered solved when both 
faces match this configuration.  



 

clock. Although the dials are interlinked, they are grouped and solved 

in relation to each other, ultimately totaling to only one move per dial 

to solve the clock. Each move is performed with one hand, and the 

method is called the flip method because it involves the use of a flip 

midway through the solve. The flip method requires the clocker to look 

at the effect of each move to determine the next move. This means the 

clocker needs visual confirmation of the moves being done, making 

the solve generally slower as the clocker cannot plan multiple moves 

ahead. 

7-Simul (7s) is a method that consists of a new kind of move: simulta-

neous moves [4-5]. Simultaneous moves are moves where the clocker 

executes a move on the front and back face of the clock at the same 

time on the same combination of pin states. This requires both hands 

to be used simultaneously for two independent moves. One of the two 

moves done simultaneously can be a d-move, which makes the overall 

simultaneous move slower due to the slower speed of performing the 

d-move. Furthermore, since one of the two moves is done on the back 

face of the clock, the clocker performs the move without seeing its 

effects on the dials. The clocker must, therefore, be able to perform a 

move of any tick number without any visual confirmation. This re-

quires the use of memorization: during inspection, the clocker must 

plan the solve and memorize a set of numbers associated with the plan 

that are necessary for the solve. The ability to quickly and accurately 

do this memorization and perform simultaneous moves is the key to 

becoming a world-class clocker. Since 2 dials are solved per simulta-

neous move, one on the front and one on the back, a maximum of 7 

simultaneous moves are needed to solve the puzzle using 7s, thus nam-

ing the method. Importantly, 7s does not have a flip during the solve. 

For reasons that go beyond the scope of this paper, each 7s solve con-

tains 0 to 2 simultaneous moves that have a d-move, depending on the 

scramble. Thus, while 7s is very fast, it can be difficult to execute due 

to these d-moves.  

7-Simul Flip (7sf) attempts to mitigate this difficulty by removing all 

d-moves, and instead adding a flip in the solve [7-8]. The 7sf method 

adopts the same principle as 7s with the use of 7 simultaneous moves. 

The difference between 7sf and 7s is that 7sf begins the solve in a 

different orientation than 7s, and a flip is added after the first three 

simultaneous moves. The flip is added after the first three simultane-

ous moves because in 7s, the d-moves can occur only on moves 1 and 

3. Thus, this change eliminates all d-moves to solve the clock at the 

cost of adding a flip. This also means that for any given scramble the 

last four moves of 7sf are the same as in 7s. Thus, the key difference 

important to this paper is that 7s contains 0 to 2 d-moves and no flip, 

whereas 7sf contains 0 d-moves and 1 flip. 

MODEL. 

To compare the benefits of 7s and 7sf, we formally define a model for 

clock solve times. The model captures the solve time as a function of 

key properties of the scramble, specifically the number of flips and the 

weighted d-move ticks of a solve.  

We define weighted d-move ticks as the number of ticks during d-

moves in a solve, with d-moves in the first move being counted double.  

The weighted d-move tick metric is defined to roughly correspond 

with the difficulty of a solve due to d-moves. The reason d-moves ticks 

during the first move are weighed doubled is because the bottom turn 

dials are placed on the table at the beginning of the solve. This means 

they are much less accessible than later during the solve, making a d-

move tick during the first move much slower. While the exact weight 

of first move d-move ticks compared to other d-move ticks depends 

on the clocker, the multiple of two is used as a common rule of thumb 

among world-class clockers when discussing the execution of solves. 

 

We introduce a new and original model to calculate clock solve times, 

which we call the Clock Standard Model. We define the Clock Stand-

ard model to calculate the solve time 𝑡 of a given scramble as 

𝑡 = 𝐴 + 𝑥𝛼 + 𝑦𝛽. (1) 

In this model, 𝐴 represents the time it takes for the clocker to execute 

all moves of a solve excluding the time for d-moves and flips. 𝑥 is the 

number of weighted d-move ticks of the solve. 𝑦 is the number of flips 

done in the solve. 𝛼 represents the d-move addition time which is the 

incremental addition to the solve time the clocker requires to execute 

a d-move tick during a simultaneous move. 𝛽 represents the flip addi-

tion time which is the incremental addition to a solve time the clocker 

requires to execute a flip during the solve. 

Notice that 𝑦 is 0 for solves using 7s and 1 for solves using 7sf. Also, 

𝑥 is always 0 for solves using 7sf. The standard clock model assumes 

that for a given scramble 𝐴 is equal when using 7s and 7sf. This is a 

reasonable assumption as the simultaneous moves 1-3 have the exact 

same tick number for each hand in both 7s and 7sf, and simultaneous 

moves 4-7 are the same for 7s and 7sf. The only difference is that 7s 

simultaneous moves can contain d-moves and those in 7sf cannot, 

which are separately accounted for using the addition of 𝛼 in the 

model. 

We define a clocker’s flip-to-d-move (𝛾) ratio as 

𝛾 =
𝛽

𝛼
. (2) 

The flip-to-d-move ratio captures whether a clocker is relatively faster 

at executing d-moves or flips. In practice, for a typical world-class 

clocker, 𝛼 is in the range 0.07 - 0.1 seconds, 𝛽 is in the range 0.3 - 0.5 

seconds, and 𝐴 depends on the scramble and can be in the range 1.4 - 

2.6 seconds. Given these typical ranges for 𝛼 and 𝛽 found among 

world-class clockers, the median value for 𝛼 is 0.085 seconds and the 

median value for 𝛽 is 0.4 seconds. This means that the median value 

for 𝛾 is 4.706. Given the median for 𝛾, we can assume that most clock-

ers exhibit a normal flip-to-d-move ratio of 4 < 𝛾 < 5. 

Finally, we define how to model a clock scramble. A clock scramble 

is a sequence of 14 random moves in 14 different pin configurations. 

An example of a scramble and its resulting clock faces are shown in 

Figure 2. The letters (𝑈𝑅,𝐷𝑅, 𝐷𝐿,…) represent which pins are pressed 

up, and the numbers (3+, 4+, 3−,…) correspond to the ticks of the 

move. Each of these moves is a random number in the range [-5, 6], 

indicating the number and direction of ticks executed in each pin con-

figuration during the scrambling. For a detailed explanation on clock 

 

Figure 2. Example clock scramble with the corresponding front and back 

faces of the scrambled clock. The scramble shown at the bottom results in 

the scrambled positions of the dials on both faces of the clock. Scrambles 
consist of 14 moves in the format shown. 



 

scrambling, see [9]. With these 14 moves, the clock can be scrambled 

into all possible random positions of the dials. We can therefore model 

a clock scramble by generating 14 random integers that make up the 

sequence of moves for the scramble. We define these scramble num-

bers as 𝑁1, … , 𝑁14, where 𝑁𝑖 ∈ [−5, 6], ∀𝑖 ∈ [1, 14]. In other words, 

the set [𝑁1, … , 𝑁14] defines a specific clock scramble. For the scramble 

shown in Figure 2 for example, the scramble numbers are 

[𝑁1, 𝑁2, 𝑁3, … ,𝑁14] = [3, 4,−3,… , 4]. 

RESULTS. 

For 7s, the number of weighted d-move ticks is the key determinant in 

how fast a given scramble can be solved. We begin by deriving a for-

mula for the weighted d-move ticks for a given scramble. 

Lemma 1: The number of weighted d-move ticks (𝑥) for a given 

scramble [𝑁1, … , 𝑁14] solved by 7-Simul is 

𝑥 = min⁡{2|𝑁10| + 6 − |6 − 𝑚𝑜𝑑12(𝑁1 +𝑁4 + 𝑁5)|, 
2|𝑁11| + 6 − |6 − 𝑚𝑜𝑑12(𝑁3 + 𝑁4 +𝑁8)|, 
2|𝑁12| + 6 − |6 − 𝑚𝑜𝑑12(𝑁2 + 𝑁3 +𝑁7)|, 
2|𝑁13| + 6 − |6 − 𝑚𝑜𝑑12(𝑁1 + 𝑁2 +𝑁6)|, 

2|6 − |6 − 𝑚𝑜𝑑12(𝑁1 +𝑁4 + 𝑁5)|| + |𝑁10|, 

2|6 − |6 − 𝑚𝑜𝑑12(𝑁3 + 𝑁4 + 𝑁8)|| + |𝑁11|, 

2|6 − |6 − 𝑚𝑜𝑑12(𝑁2 + 𝑁3 + 𝑁7)|| + |𝑁12|, 

2|6 − |6 −𝑚𝑜𝑑12(𝑁1 + 𝑁2 + 𝑁6)|| + |𝑁13|}. (3) 

Proof: Using 7s, the clock can be solved in eight different orientations. 

This is because the clock can be held such that the 12 o’clock markings 

face up, right, down, or left, for both the front and back face of the 

puzzle. The weighted d-move ticks for a scramble is the minimum of 

the weighted d-move ticks in each of these eight orientations.  For each 

orientation, the ticks of the two d-moves in a 7s solve are determined 

by two specific tick differences. We define a tick difference to be the 

difference in dial position, measured in ticks, between two specific di-

als. The number of ticks of the first d-move is determined by the tick 

difference between the center and bottom edge dial on the front face 

in the initial orientation. The number of ticks of the second d-move is 

determined by the tick difference between the center and top edge dial 

on the back face. For any given orientation, these two tick differences 

form pairs. Each pair of tick differences has two orientations: one ori-

entation where the first tick difference determines the first d-move and 

one orientation where the first tick difference determines the second 

d-move. Given the eight possible orientations, there are four pairs of 

such tick differences. 

The ticks of the d-moves can be determined as a function of these tick 

differences, and therefore can be expressed as a function of the initial 

scramble values 𝑁1, … , 𝑁14. Each tick difference can be found by add-

ing up the scramble values of all scramble moves that turn the center 

dial, but not the corresponding edge dial. This calculates the total ticks 

of all moves affecting only one of the two dials, thus resulting in the 

tick difference. By thus considering moves that only affect the center 

for each tick difference in each pair, the following four pairs of tick 

differences are found: (𝑁1 + 𝑁4 + 𝑁5, 𝑁10), (𝑁3 +𝑁4 + 𝑁8, 𝑁11), 
(𝑁2 + 𝑁3 + 𝑁7, 𝑁12), and (𝑁1 + 𝑁2 + 𝑁6, 𝑁13). Each of these pairs 

represents the total number of ticks required to perform the two d-

moves for a given orientation.  

We now derive the weighted d-move ticks for a scramble using these 

four pairs. For each tick difference, we calculate the d-move ticks ex-

ecuted by the clocker. D-move ticks are in the range [0, 6] as that is 

the maximum number of ticks in any direction that needs to be turned  

for any move. For the four tick differences with the form 𝑁, the d-

move ticks are simply |𝑁|. For the tick differences that follow the form 

𝑁𝑥 + 𝑁𝑦 +𝑁𝑧, the d-move ticks can be expressed as |6 − |6 −

𝑚𝑜𝑑12(𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧)||. Since our definition of weighted d-move 

ticks doubles the d-move ticks in the first move, these four pairs of 

tick differences turn into eight combinations, one for each tick differ-

ence in a pair being the first d-move of a solve. This accounts for the 

eight orientations possible in a solve. For one expression, the form 𝑁 

is multiplied by two and for the other expression, the form 𝑁𝑥 + 𝑁𝑦 +

𝑁𝑧 is multiplied by two. Finally, taking the minimum of these eight 

expressions results in the weighted d-move tick value 𝑥 for a given 

scramble.                                                                                                                           ∎ 

In practice, the previous Lemma implicitly assumes that the clocker is 

able to find the optimal orientation for the solve during inspection. 

This is a reasonable assumption as a world-class clocker is easily able 

to identify the best orientation and do its memorization during inspec-

tion. This means that when executing a solve using 7s, a clocker will 

solve it from the orientation that results in the optimal weighted d-

move ticks. 

Lemma 1 shows that the weighted d-move ticks 𝑥 for a given scramble 

can be calculated purely based on the scramble numbers 

𝑁1, … , 𝑁14.The weighted d-move ticks for a given scramble deter-

mines how fast the solve is using 7s. This means that for a given scram-

ble, we can determine which method is faster. Scrambles for which the 

weighted d-move ticks are low are faster with 7s than 7sf, and scram-

bles for which the weighted d-move ticks are high are faster with 7sf 

than 7s. Ideally, this allows the clocker to decide on the better method 

for a specific scramble during inspection. 

 

Figure 3.  Distribution of weighted d-move ticks (𝑥) of random scrambles. The blue bar graph shows the frequency of scrambles with specific weighted d-move 

tick counts, which can range from 0 to 18. The orange line shows the cumulative frequency of scrambles with weighted d-move ticks from 0 to the given value. 



 

Thus, to determine the percentage of scrambles that are faster with 

each of the two methods, we calculate the distribution of weighted d-

move ticks for random scrambles. The following lemma (see Figure 

3) shows the distribution of weighted d-move ticks for random scram-

bles. 

Lemma 2: The weighted d-move ticks (𝑥) of a random clock scramble 

follows the distribution 

[0.054, 0.102, 0.179, 0.213, 0.199, 0.147, 
0.073, 0.026, 0.006, 0.001, 0, … , 0]. (4) 

Proof: We model a clock scramble as described in the Model section 

by generating 14 random ordered integers in the range [-5, 6] and la-

belling them 𝑁1, … , 𝑁14. For each scramble, we then calculate the 

weighted d-move ticks using Lemma 1. Repeating this for 

1,000,000,000 randomly generated scrambles, we find the distribution 

shown in Figure 3.                                                                                                         ∎ 

Having found the distribution of the weighted d-move ticks, we now 

establish which method is faster as a function of the weighted d-move 

ticks of a scramble. 

Theorem 1: 7-Simul is faster for all scrambles where the weighted d-

move ticks (𝑥) is 𝑥 < 5, and 7-Simul Flip is faster for all scrambles 

where 𝑥 ≥ 5. 

Proof: A solve using 7s contains anywhere between 0 and 18 weighted 

d-move ticks and no flip. A solve using 7sf instead consists of no 

weighted d-move ticks and one flip. Therefore, the clock standard 

model for 7s and 7sf can be represented as 𝑡 = 𝐴 + 𝑥𝛼 and 𝑡 = 𝐴 +
𝛽, respectively, where 𝑥 is the number of weighted d-move ticks. 

Hence, for any given scramble, if 𝑥𝛼 < 𝛽, 7s is faster than 7sf and if 

𝑥𝛼 > 𝛽, 7sf is faster than 7s. Given that most clockers have a normal 

flip-to-d-move ratio of 4 < 𝛾⁡ < 5, the clocker’s ratio is 4 < ⁡
𝛽

𝛼
< 5, 

and thus 4𝛼 < 𝛽 < 5𝛼. It follows that if 𝑥 < 5 for a given scramble, 

then 𝑥𝛼 < 𝛽 and the solve is faster with 7s. If 𝑥 ≥ 5 for a given scram-

ble, then 𝑥𝛼 > 𝛽 and the solve is faster with 7sf.                                           ∎ 

Next, we combine Lemma 2 and Theorem 1 to derive the main theo-

rem of the paper, namely the percentage of scrambles faster with 7s 

and 7sf, respectively. 

Theorem 2: 74.7% of all possible scrambles are faster with 7-Simul, 

while 7-Simul Flip is faster for the remaining 25.3% of scrambles.  

Proof: Lemma 2 and Figure 3 show the distribution of weighted d-

move ticks for a random scramble. The probability that 𝑥 < 5 is the 

combined sum of the probabilities that 𝑥 ∈ {0, 1, 2, 3, 4}, since a given 

scramble has only one possible weighted d-move tick value. The sum 

of these probabilities is 74.7%. Since 𝑥 is in the range [0, 18], the 

probability that 𝑥 ≥ 5 is 1 − 𝑃(𝑥 < 5) which is 25.3%. It follows 

from Theorem 1 that the 74.7% of scrambles where 𝑥 < 5 are faster 

with 7s than 7sf, and the other 25.3% of scrambles where 𝑥 ≥ 5 are 

faster with 7sf than 7s.                                                                                                 ∎ 

CONCLUSION. 

In this paper, we have analyzed the difference between 7-Simul and 7-

Simul Flip for solving the Rubik’s clock. We have shown how the 

solve time of a scramble fundamentally depends on the weighted d-

move tick variable. Using our equation for the weighted d-move ticks 

𝑥, we can determine for every scramble which of the two methods is 

faster. Analyzing the properties of a random scramble, we further 

show that 7-Simul is faster for 74.7% of scrambles where 𝑥 < 5 and 

7-Simul Flip is faster for 25.3% of scrambles where 𝑥 ≥ 5.  

The invention of 7-Simul Flip has affected the solving methods of 

many world-class clockers. With practice, world-class clockers are 

able to determine whether a scramble has 𝑥 < 5 or 𝑥 ≥ 5 within the 

first few seconds of inspection. Accordingly, the clocker can choose 

the faster method and use the remaining inspection time for memori-

zation. Although 7-Simul is still the primary method for many world-

class clockers, others including Carter Thomas have established rec-

ords using both methods, adjusting the method depending on the given 

scramble during inspection. In this paper, we provide the theoretical 

underpinning for this new dual-method, or method-neutral, approach 

to clocking. We expect that in future years, this method-neutral ap-

proach will further gain in popularity among world-class clockers. 
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