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BRIEF. Using AlphaFold protein structure construction and HADDOCK ligand docking, I identified two novel drug resistance mutations in 

MDR-TB.

ABSTRACT. Antibiotic-resistant pathogens are a global crisis. 

Multidrug-Resistant Tuberculosis (MDR-TB) is a strain of TB that 

infects ~500,000 people per year, inflicting devastation. Ideally, 

scientists could identify potential resistance mutations before they 

manifest in patients. Although there are current experimental tech-

niques for identification, they are costly, time-consuming, and spe-

cialized. I propose an inexpensive and novel yet easily operatable 

pipeline for resistance mutation identification. Using protein struc-

ture prediction algorithms (AlphaFold) and molecular docking 

(HADDOCK), I am able to study the effects of different single-

nucleotide polymorphisms (SNPs) on the binding affinity of pro-

tein-drug combinations. Focusing specifically on the most com-

mon protein-drug combination of katG and Isoniazid for MDR-

TB, I propose two novel mutations, N323S and N330Q, that ex-

hibit all hallmarks of a resistance mutation. Specifically, both mu-

tated katG structures demonstrate slightly worse binding to Isoni-

azid, on par with a known benchmark resistance mutation (S315T). 

A computational model of predicting mutagenesis is important to 

provide a more cost-effective method of streamlining the discov-

ery of drug-resistant mutations. 

INTRODUCTION.  

Since the discovery of penicillin in 1928 [1], antibiotics have saved 

innumerable lives. For 100 years, humanity has enjoyed the luxury of 

cheap, effective therapeutics for devastating illnesses like Tuberculo-

sis. However, as humans use more antibiotics for common diseases, 

we create a selective evolutionary pressure for drug resistant bacterial 

strains, which have resistance mutations that disable the effect of com-

mon drugs. According to the WHO, the antimicrobial resistance crisis 

is one of the top global public health threats, contributing to >4.95 

million deaths every year [2]. 

Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. 

Spread by coughing and sneezing, tuberculosis is easily transmissible. 

Prior to antibiotics, the mortality rate of tuberculosis was 50%, earning 

TB the name “white death” [3]. After antibiotics, the mortality rate 

decreased. Recently, a new strain known as Multidrug-Resistant Tu-

berculosis (MDR-TB) has become increasingly prevalent. Of the 

roughly 10 million TB cases per year, around 500,000 of them are 

MDR-TB, which is increasing at a 3-5% rate per year [4][5]. MDR-

TB does not respond to the most common antibiotics. Not everyone 

has access to rarer antibiotics that MDR-TB is not resistant to. Thus, 

mortality rate is 20% for MDR-TB compared to 5% for normal TB [6]. 

The most common treatment for active TB is Isoniazid (INH). Isonia-

zid is consumed in a pro-drug form. It is subsequently activated by a 

critical enzyme encoded by the gene katG in TB bacteria, allowing 

INH to kill the bacteria by inhibiting the production of an essential 

component in the bacterial cell wall [7]. However, in MDR-TB, vari-

ous point substitution mutations in the katG enzyme stop Isoniazid ac-

tivation. One common mutation is S315T, which I decided to focus on 

as a mutation representative of other resistance mutations. Critically, 

S315T does not inhibit the other functions of the enzyme besides Iso-

niazid activation. Thus, the S315T bacteria survives with drug re-

sistance [8]. 

Scientists are studying drug resistance mutations in diseases like 

MDR-TB extensively and hope to predict potential resistance muta-

tions before they even evolve in bacteria. However, this is hard: 

The current gold standard is in vitro mutagenesis screens. There are 

two options [9]: 

1. Recombinant DNA methods are used to randomly and non-spe-

cifically mutate genes of choice. 

2. Expensive precision tools (like CRISPR-Cas9 + Homology Di-

rected Repair) are used to knock-in the desired mutation. 

Either way, current methodology is slow, prohibitively expensive, 

and/or highly specialized.  

In contrast, I believe that mutagenesis screening and prediction of drug 

resistance mutations can be done through high-throughput computa-

tional screening. Here, I develop a novel resistance mutation identifi-

cation system and validate its efficacy by identifying new mutations 

for katG-Isoniazid in MDR-TB. The system is inexpensive, accurate 

in modelling interactions, and can be used to optimize more involved 

in vitro experiments toward the mutations most likely to cause drug 

resistance. 

MATERIALS AND METHODS.  

The computational pipeline I propose is as follows. My procedure fo-

cuses on the katG-Isoniazid protein-drug combination but can be ap-

plied to any similar pairing. First, I conducted active site modeling. 

Active Site Modeling. 

I started with accessing a mirror of the Protein Data Bank (PDB) [10] 

to retrieve an X-ray Crystallography or Cryo-EM experimental struc-

ture for katG. In this case, I used PDB 2CCA. Then, I used PyMol by 

Schrödinger to identify polar contacts to the literature described active 

 

Figure 1. Active site modeling for katG, where the active site is still not 
fully understood. Greens are Isoniazid, Reds are nearby residues. 



 

site [11]. Subsequently, I conducted a frequency analysis of known 

drug resistance mutations to biochemically categorize and estimate the 

enzymatic effect of each residue (Table S1). Broadly, SNPs can be 

classified as polar-to-polar, basic-to-polar, etc. based on the nature of 

the amino acids involved in the mutation. As previously mentioned, 

current literature also describes the purported active site of katG (Fig-

ure 1) [11]. Thus, active site relevant SNPs, particularly ones that mod-

ify the biochemical nature of the amino acids, are of particular interest. 

Using these criteria, I generated a shortlist of potential SNPs not cur-

rently described in strains of MDR-TB to test.  

AlphaFold Structure Generation. 

With the shortlist of mutations to test, the primary amino acid se-

quence was extracted from the experimentally determined PDB struc-

ture in FASTA format. The mutations were then introduced to the 

FASTA file through editing on a preferred text editor. Finally, the 

novel mutated structure was determined using AlphaFold. At the time 

of experimentation, AlphaFold 3 had not been released, and the 

GitHub release of AlphaFold 2 [12] was used instead. 

Molecular Docking Simulation. 

Finally, I isolated the Isoniazid ligand from the experimentally deter-

mined PDB structure using PyMol. The ligand was then subsequently 

docked to each mutated structure using High Ambiguity Driven pro-

tein-protein Docking (HADDOCK), a flexible docking approach 

benchmarked with high accuracy for docking interactions relative to 

other docking methods (Figure 2) [13]. The resultant weighted 

HADDOCK score can serve as a proxy for binding affinity when con-

sidering mutated structures. 

In addition to conducting this procedure for the shortlist of mutations, 

I also conducted docking for the S315T mutation—a known drug re-

sistance mutation—as a benchmark to compare the mutated 

HADDOCK scores against. 

 

Figure 2. Isoniazid (magenta) docked within the AlphaFold katG protein 
(green) following HADDOCK. 

RESULTS. 

Validating Pipeline Accuracy. 

Before proceeding to analyze HADDOCK molecular docking scores 

for variants, I first validated the accuracy of the generated structures 

by AlphaFold. Root-mean-square-deviation, or RMSD, is a common 

metric used to determine structural deviation between two protein 

structures. A low RMSD, measured in angstroms, would imply Al-

phaFold produced a structure extremely similar to the experimental 

structure. MatchAlign score is a similar score reported by PyMol. An 

RMSD <2A is considered good [14]. 

Table 1. RMSD Between Experimental and AlphaFold Structures  

Structure RMSD Value (Å) MatchAlign Score 

Experimental (PDB) KatG vs. 
AlphaFold KatG 

0.434 (4593 to 
4593 atoms) 

3189.517 

Experimental (PDB) KatG w/ 
S315T Mutation vs. AlphaFold 
KatG w/ S315T Mutation 

0.526 (4686 to 
4686 atoms) 

3132.780 

Clearly, the low RMSD values indicate strong structural prediction re-

sults from AlphaFold on katG (Table 1). Qualitatively, we can visually 

see minimal structural deviation, which corresponds to our under-

standing that SNPs should not broadly change protein structure (Fig-

ure 3). 

Finally, knowing that predicted HADDOCK scores docked against 

Isoniazid should not deviate too much between different SNP muta-

tions, I compared the AlphaFold structures to PyMol’s simple amino 

acid substitution tool (Table 2). HADDOCK scores are represented in 

HADDOCK score units, which is a linear combination of various en-

ergies and buried surface area [13]. There is no absolute score which 

represents ‘good’ docking. The score must be compared relatively. On 

average, AlphaFold deviated only 5.58 HADDOCK score units, while 

PyMol’s tool deviated 9.52 from the experimentally derived control 

S315T mutation. Thus, AlphaFold is more accurate for docking. 

Determining Novel Resistance Mutation for katG. 

Table 3 reports HADDOCK values of the shortlisted mutations/vari-

ants tested. Additional metrics beyond the HADDOCK score are re-

ported in Table S2.  

 

Figure 3. An overlay of five mutations’ AlphaFold structures with the ex-

perimentally derived wild-type and S315T PDB. Note minimal structural 

deviations. The white and cyan correspond to the experimental wild-type 
and S315T respectively. The other colors represent the five AlphaFold 
structures. 

Table 2. HADDOCK Score Difference to S315T PDB’s Docking Score 

Variant/Mutation AlphaFold Score Dif-
ference 

PyMol Score Differ-
ence 

Variant 1: T314S 1.7 12.5 

Variant 2: N323Q 2.9 6.2 

Variant 3: N323S 9.5 9.1 

Variant 4: N330Q 12.4 9.0 

Variant 5: N330S 1.4 10.8 

Average 5.58 9.52 



 

Table 3. HADDOCK Values for All Mutations 

Variant/Muta-

tion 

Structure Origin Mutation Bio-

chemistry 

HADDOCK 

Score 

Wild Type RCSB Protein 
Data Bank 

N/A 292.8 +/- 7.9 

Wild Type AlphaFold N/A 289.5 +/- 5.2 

Mutation: 
S315T 

RCSB Protein 
Data Bank 

Polar to Polar 285.6 +/- 28.8 

Mutation: 
S315T 

AlphaFold Polar to Polar 291 +/- 4.3 

Variant 1: 
T314S 

AlphaFold Polar to Polar 287.3 +/- 35.3 

Variant 2: 
N323Q 

AlphaFold Polar to Polar 282.7 +/- 26.6 

Variant 3: 
N323S 

AlphaFold Polar to Polar 295.1 +/- 5.0 

Variant 4: 
N330Q 

AlphaFold Polar to Polar 298.0 +/- 5.0 

Variant 5: 
N330S 

AlphaFold Polar to Polar 284.2 +/- 28.9 

 

DISCUSSION. 

As demonstrated by the reported HADDOCK scores for the S315T 

mutation, which is a known drug resistance mutation, there are a num-

ber of criteria we are looking for when analyzing whether a candidate 

mutation might confer drug resistance.  

First, resistance mutations create slightly lower binding interactions 

between Isoniazid and katG. Higher HADDOCK score approximates 

lower binding interaction. Specifically, S315T (291.0 score) > Wild 

Type (289.5 score). 

Second, resistance mutations do not create significant binding defi-

ciencies. Otherwise, katG cannot function normally and the MDR-TB 

bacteria dies. Thus, we cannot expect the scores to be drastically dif-

ferent, or else the entire nature of the protein-drug interaction may be 

compromised. 

There were two katG mutations we screened that satisfied the above 

criteria. Thus, they are potential resistance mutations within katG. 

These mutations have never been described in literature. The first mu-

tation is variant 3: N323S. The HADDOCK score was 295.1 Clearly, 

295.1 is greater than 289.5. However, it is not significantly greater. 

This indicates worse binding for the drug Isoniazid and satisfies the 

two criteria described. 

The second mutation is variant 4: N330Q. The HADDOCK score was 

298.0. Again, 298.0 is greater than 289.5. However, it is not signifi-

cantly greater. This indicates worse binding for the drug Isoniazid and 

satisfies the two criteria described. 

The implications of discovering these two mutations are significant. 

However, computational prediction alone is not sufficient to defini-

tively quantify the variants’ binding affinity—it is instead a prelimi-

nary screening measure that indicates these two variants are worth fur-

ther investigation. Thus, the next step would be to experimentally con-

firm the binding affinities of the two variants I identified using an in 

vitro binding assay. Similarly, I hope to also verify in vitro whether 

these variants exhibit resistance to Isoniazid. 

This simple computational pipeline easily replicable for scientists em-

powers high-throughput analysis of potentially dangerous mutations. 

With this technology, researchers can model hundreds of mutations in 

MDR-TB and other diseases might be dangerous in hours and imple-

ment necessary interventions or surveillance to address them accord-

ingly after experimental verification. This would be a powerful first 

step toward solving the drug resistance crisis that threatens our future.  

While the results of this research and the discovery of two resistance 

mutations is certainly exciting, there are several future research direc-

tions I would like to take. Specifically, I hope to increase the number 

of synthetic variants screened by expanding outside of relatively sim-

ple active site hotspots by examining the likelihood of mutagenesis at 

certain residues. In addition, I hope to apply my procedure to other 

drug resistance pathogens, like Vancomycin-resistant Enterococcus or 

C. difficile. Greater accuracy can be ascertained by incorporating other 

docking pipelines and protein generation algorithms, such as Auto-

Dock Vina and RosettaFold respectively. Lastly, I hope to incorporate 

some form of machine learning to better identify mutations to test. A 

relatively simple supervised MLP with mutations, protein structure 

data, and whether they ultimately were resistance mutations can be 

envisioned to predict whether new mutations are likely to cause re-

sistance. 

CONCLUSION. 

Using a simple yet powerful computational pipeline, I was able to 

identify two new potential resistance mutations for Multidrug-Re-

sistant Tuberculosis (MDR-TB). The pipeline is high-throughput and 

easily applicable to other diseases of interest. In comparison to in vitro 

mutagenesis screens, this procedure costs less, requires less time, and 

is easy to operate. This represents not only an increase in understand-

ing of how MDR-TB evolve in the future, but also a new tool to further 

elucidate drug resistance mechanisms for all diseases.  
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SUPPORTING INFORMATION. 

1. Frequency analysis data from the active site modeling procedure. 

2. Full HADDOCK run data for all katG mutations. 
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