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BRIEF. Training lightweight convolutional neural networks to detect malaria from blood smear microscopy to assist medical professionals in 

diagnosis.  

ABSTRACT. Malaria is a bloodborne disease caused by pathogens 

transferred through the bite of the Anopheles mosquito. Detecting 

malaria by blood smear microscopy is time-consuming and can be 

inefficient when areas with few pathologists are overwhelmed with 

medical cases. Furthermore, due to the complex and detailed nature 

of blood smear imagery, a human will take time to scan small details 

that could have been scanned more thoroughly by computer 

software. Due to these constraints, we hypothesized that a machine 

learning model can be trained to diagnose malaria from this imagery 

efficiently and accurately. This would decrease the time spent 

analyzing multiple samples, and also improve diagnostic accuracy. 

In this project, we aim to train a deep learning model to detect 

parasitized blood cells using various convolutional neural networks 

(CNNs, or ConvNets), namely, MobileNetV2 and EfficientNetB0. 

We compare metrics such as accuracy, precision, and F1 score and 

take a holistic overview of each model while prioritizing speed and 

accuracy to ensure the models can run on devices with low compute 

power and memory, which may be particularly useful in resource-

limited areas where malaria is most prevalent. The best model 

concluded at the end of the study is able to achieve an accuracy of 

96% and an average F1 score of 95.5% while maintaining low CPU 

and memory usage.  

INTRODUCTION. 

Background. 

According to the World Health Organization’s 2023 World Malaria 

Report, globally, in 2022, there were an estimated 249 million malaria 

cases in 85 malaria endemic countries and areas (including the territory 

of French Guiana), an increase of 5 million cases compared with 2021. 

Many sub-Saharan African countries and tropical islands contributed to 

this increase. In 2022 the death rate for malaria was 14.3 deaths per 100 

000 population at risk, resulting in 608,000 deaths in 2022 [1]. 

Quick and accurate diagnosis of malaria is crucial to prevent further 

infection and ensure speedy treatment with the correct medications. 

Delays in diagnosis and treatment is a leading cause of death in malaria 

patients in the United States [2]. There are 3 major types of diagnostic 

tests for malaria: Blood smear microscopy, Rapid diagnostic testing 

(RDTs), and polymerase chain reaction (PCR) tests [2]. Because blood 

smear microscopy is the focus of this paper–since features of parasitized 

cells in this format lend themselves to be distinguished by machine 

learning models well–only this technique will be discussed. In blood 

smear microscopy, examiners identify certain structures to detect the 

presence of 5–10 parasites in just 1μl of blood [3]. Although analyzing 

blood smears is the primary method used to evaluate blood samples for 

malaria detection around the world [3], due to human error and untrained 

medics in rural areas, the diagnostic sensitivity of blood smear 

microscopy is no better than 75%–90% under the best of conditions. In 

some settings, sensitivity may be as low as 50% [4]. 

The lack of consistent accuracy demonstrated by the statistics calls for a 

new solution. The issue of predicting whether a cell is parasitized or not 

from an image based on certain features needs a machine learning 

approach, namely, a neural network. Labeled microscopy imaging can 

be leveraged to train efficient machine learning models to make fast and 

accurate predictions. 

Machine Learning and CNNs. 

In a broad sense, machine learning is the process by which a computer 

iteratively improves its performance by learning from experience. 

“Experience” typically takes the form of a labeled dataset which the 

algorithm can learn from [5]. This project utilizes supervised learning 

which is a branch of machine learning that entails learning a relation 

between a set of input variables X and an output variable Y, known as 

features and labels respectively, and applying this mapping to predict the 

outputs for unseen data [6]. When dealing with images, a certain type of 

neural network, known as a convolutional neural network, is used. A 

CNN takes in an n-dimensional tensor X through a series of processing, 

where each step is known as a layer. The convolutional layer of a 2D 

CNN uses cube-shaped filters, or kernels, which are a set of weights 

applied to the parts of the image (in a sliding window fashion) through 

a process known as a convolution [7]. The resulting feature maps then 

can be passed on to the fully connected portion of the network, where 

the model maps a relation between the features and labels to make 

predictions on data. The model takes input images and labels, and uses 

gradient descent to find a set of weights with which to make predictions 

on input data. This process is known as backpropagation and is the most 

common method for training neural networks [8]. 

The goal of this project is to train a convolutional neural network with a 

predefined architecture to make accurate predictions about whether a 

blood sample is parasitized or not while maintaining accessibility across 

devices of low computational power. Because ConvNets can be 

arbitrarily large and complex, training them may require a lot of time 

and resources, which is why comparing all models to find optimal 

performance is not feasible without access to large cloud servers or high-

end GPUs. With this project, we aim to train a model that supports our 

hypothesis, meaning it can make extremely accurate malaria diagnosis 

while having a low memory footprint, enabling the model to run on a 

variety of devices. 

MATERIALS AND METHODS. 

Dataset. 

In this study, the Malaria Detection dataset from the Kaggle website was 

used [9] due to its inclusion of a large amount of data, pre-split into 

training, testing, and validation folders. The data set consists of 15,031 

images of blood cells split into train, test, and validation folders, each 

with 2 sub-folders of parasitized and uninfected cells. The training set 

contains 13,152 images (6,570 parasitized cells and 6,582 uninfected 

cells), the validation set contains 1,254 images (629 infected cells and 

624 uninfected cells), and the test set contains 626 images (309 

parasitized cells and 317 uninfected cells). The training set is used to 

train the model, the validation set is used to ensure the model does not 

overfit the training data, and the test set is used to test various aspects of 

the model after it has completed training. 



 

Image Augmentation. 

To create a robust model with little bias towards a certain cell shape or 

size that is unrelated to malaria prediction, image augmentation 

improves the model's ability to generalize. Additionally, randomly 

transforming the data provides a greater benefit for improving 

performance and reducing overfitting [10]. The transformations applied 

to our data were small translations in width, height, and rotation. 

Because the data is already tightly fit inside the borders of the image 

space (Figure 1), zooming and shearing were found to occasionally clip 

out identifying features of the cell which is why those two 

transformations were not included during the augmentation phase. 

Software. 

For this project, the Kaggle data sources were imported into the Google 

Colaboratory Notebook software, which was used to visualize the data 

and train the models. Within this environment, the TensorFlow Keras 

Python library [11] was used to create and train the models. 

Models. 

We trained two convolutional networks on the data. MobileNetV2 and 

EfficientNetB0 were chosen due to their low number of parameters and 

smaller size (Table 1). The compound scaling approach of EfficientNets 

makes them better for large data and means that they use an order of 

magnitude fewer parameters and FLOPS (calculations per second) than 

other ConvNets with similar accuracy [12]. These models were designed 

to be easily scalable, meaning they start out small and can be scaled up 

based on the requirements of the problem. MobileNets use separable 

convolutions, which use between 8 to 9 times less computation than 

standard convolutions at only a small reduction in accuracy [13]. 

MobileNetV2 was designed to be small enough to run on mobile devices 

but still have a high enough accuracy to compete with state-of-the-art 

architectures. In addition, we also trained the ResNet50 model, but was 

very quickly found to be too large and complex for the task and overfit 

the data substantially while also having a much longer training time than 

the other two models. Instead of using the pretrained models for just 

feature extraction and then only training the fully connected portion of 

the model, we trained the entire architecture from scratch since the 

images were found to have distinguishing features that the pre-trained 

model was not suitably trained for. Both models were initialized using 

ImageNet weights as a baseline. After training, we compared metrics 

like accuracy, F1 score, ROC curve, and memory usage to evaluate 

model performance. 

RESULTS. 

Table 2. Results for MobileNetV2  

 Precision Recall F1 Score Inference time 

Parasitized 0.96 0.94 0.95 12s 

Uninfected 0.95 0.97 0.96  

Accuracy   0.96  

 

Table 3. Results for EfficientNetB0  

 Precision Recall F1 Score Inference time 

Parasitized 0.97 0.93 0.95 13s 

Uninfected 0.93 0.97 0.95  

Accuracy   0.95  

 

When trained on the training set of the data (containing 13,152 images), 

MobileNetV2 achieved an accuracy on the test set of 96% and an F1 

score of 95% for parasitized cells and 96% for uninfected cells (Table 

2). EfficientNetB0 achieved an accuracy of 95% and an F1 score of 95% 

on the parasitized and uninfected cells (Table 3). 

DISCUSSION. 

Model Comparisons. 

Since the models both have similar performance, we can compare other 

metrics like the ROC curve. The ROC (Receiver Operating 

Characteristic) curve is a relation between the false positive rate and the 

true positive rate. The area under the curve (AUC) represents the 

probability that a randomly chosen diseased subject is correctly rated or 

ranked with greater suspicion than a randomly chosen non-diseased 

subject [14]. In our case this means that when given 2 cells, one 

parasitized and one unaffected, AUC gives the probability that the model 

will assign a higher risk of malaria to the cell that is actually parasitized. 

However, using ROC-AUC as a numerical measure of model 

performance has some well known disadvantages, such as when ROC 

curves cross [15], the intersection means that one curve has larger 

sensitivity for certain choices while the other has larger sensitivity for 

other choices of specificity [16]. Due to this disadvantage, and the fact 

that the ROC curves do in-fact cross, the area under the curves may 

misrepresent the characteristics of the models (Figure 2, 3). 

 

Figure 2. ROC curve graph for both models. An ROC curve close to the upper 
left corner of the graph indicates a high true positive rate and a low false 

positive rate. 

 

Figure 1. Feature difference between parasitized and unaffected cells. 

Parasitized cells have one or more darker regions within them, while 
unaffected cells are a single shade. 

Table 1. Model information 

Model Epochs Learning Rate Parameters FLOPS 

MobileNetV2 18 0.0003 3.5M 314M 

EfficientNetB0 25 0.0003 5.3M 390M 

     



 

 

Figure 3. The zoomed in ROC curve graphs show the crossing of the curves 

clearly. 

The next step is to compare the model architecture and find the model 

that is the most efficient because heavier models can impose 

considerable computation and memory overhead [17]. This limits their 

practical use and deployability. Using model data from the Keras 

applications list, MobileNetV2 has a smaller size, number of layers, and 

depth than EfficientNetB0 [18]. Additionally, after convergence, 

MobileNetV2 had a loss of 0.13429 on the training set while 

EfficientNetB0 had a loss of 0.14895 on the training set. The final step 

in evaluating the performance of the two models is to compare the 

memory usage and CPU load. The CPU provided by Google Collab – on 

which the model was trained and evaluated – was an Intel Xeon CPU 

with 13 GB of RAM. This is an important metric since many devices in 

rural areas without access to expensive, modern technology have to rely 

on computationally weak devices for healthcare. Using the psutil and 

time libraries in python, computing the difference in memory usage by 

the average of 5 trials each tells us that MobileNetV2 used an average of 

8,019,968 bytes of memory while EfficientNetB0 used an average of 

11,703,910 bytes of memory (Table 4). Likewise, MobileNetV2 had an 

average CPU usage of 0.1721% while EfficientNetB0 had an average 

CPU usage of 0.3722% (Table 4). 

Table 4. Resource usage by both models. 

 MobileNetV2 EfficientNetB0 

Memory (bytes) 8,019,968 11,703,910 

CPU (%) 0.1721 0.3722 

   

As we hypothesized, we were able to train a model that could make 

extremely accurate malaria diagnosis while maintaining a low memory 

footprint. While both these models achieved our goal, we still need to 

compare them to find the best model out of the two, since although they 

have similar performance, other factors can also influence which one is 

better for classifying malaria. Because both models perform similarly 

across most metrics, choosing the best out of the two requires a holistic 

analysis.  

As seen in tables 2, 3, and 4, MobileNetV2’s slightly higher performance 

metrics and lower CPU and memory usage make it ideal for running live 

on small devices, and therefore MobileNetV2 is the faster, more accurate 

model out of the two when classifying malaria from blood smears. Using 

MobileNetV2, we were able to train a model that can make faster 

predictions, more accurate predictions on weaker machines, which is 

significant to low-resource areas without access to high-end devices. 

Addressing Major Issues. 

A thorough analysis of the model’s incorrect predictions revealed that 

while some of the incorrectly predicted images did show signs of malaria 

which the model was not able to detect, the majority of the incorrectly 

predicted images did not show any visual signs of malaria at all. This 

brought up the possibility that the majority of the misclassified images 

that did not show any visible signs of malaria may not have been 

misclassified due to model error, but may be due to inconsistencies 

within the dataset itself. Studies similar to this one have shown that 

similar datasets with blood smear microscopy for detecting malaria have 

a considerable amount of incorrectly labeled data. A specific study, 

using a superset of the dataset used in this experiment, consulted with an 

expert in the field and found that roughly 5.1% of the 27,558 images 

were incorrectly labeled [19]. Although we cannot confirm that images 

in our dataset were mislabeled, based on similar findings from other 

studies, and the fact that the majority of models described in papers in 

this field cap out at an accuracy of roughly 94 - 97%, it may be 

reasonable to assume that due to the large size of this dataset, incorrectly 

predicted images not showing visible sign of malaria are misclassified. 

To deal with both of these issues, we created a new modified training 

set. In this new training set, each of the misclassified images which 

showed signs of malaria were duplicated 5 times to improve dataset 

balance. We also omitted the potentially misclassified images in the 

modified training set to reduce the negative bias to the model. However, 

when MobileNetV2 was trained on the modified training set, these 

solutions only improved model accuracy by a fraction of a percent. A 

further investigation of these issues may be helpful. 

Future Work. 

There are two potential ways we thought of that could increase the 

accuracy of the model and even potentially decrease its complexity. Both 

these methods could provide greater model accuracy and possible 

decreases in computer power requirements. 

1) Using an auto-encoder for feature extraction may work very well on 

this dataset, since reducing the dimensionality for feature selection could 

remove irrelevant features like cell shape and size and focus the model 

on detecting relevant features such as darker regions within the cell. 

2) Before using traditional deep learning methods, a preprocessing 

function could be implemented that uses edge detection to segment the 

cell image into boundaries in which more than one boundary would 

mean there is a subregion of darker color within the cell indicating 

malaria. 

CONCLUSION. 

In this study, we trained and compared two machine learning models to 

predict malaria from blood smear imagery and discussed their 

performance and how it affects real world use cases. Various aspects of 

the model were compared to find the better model. We also discussed 

how the motivation behind the creation of these models influences their 

advantages in solving this problem. It is crucial that automated malaria 

detection be fast and accurate since it’s necessary the models deliver 

results quickly and are able to run on low power devices found in 

resource-limited areas, which is why the models trained and compared 

in this project have the potential to be implemented in apps or services 

that pathologists could use quickly on any device to aid their diagnosis 

on whether a patient has malaria based on blood smear microscopy. 
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