
Effective Learning of 3D Object Detection Models
Amogh Gupta

Saratoga High School, Saratoga, CA, USA, 95070

KEYWORDS. Computer Vision, Machine Learning, Neural Networks, Object Detection, Model Optimization

BRIEF. Understanding the impact of kernel size, dropout ratios, and convolutional layers on a vision model’s performance.

ABSTRACT. This paper investigates the use of Convolutional

Neural Networks (CNNs) for object detection and classification of

3D shapes from a dataset, with a focus on optimizing model

performance through architectural and hyperparameter adjustments.

Various modifications were applied to the CNN, including altering

the number of layers, adjusting kernel sizes, modifying dropout

rates, and removing Batch Normalization layers. Experimental

results demonstrated that an optimal dropout rate of 0.1 maintained

high accuracy, while kernel sizes of 5 were most effective for feature

extraction. Removing Batch Normalization drastically reduced

accuracy to 25 percent, revealing its critical role in stabilizing

learning. The study highlights the importance of tuning CNN

parameters for achieving robust and accurate classification in 3D

shape recognition tasks. These insights provide a foundation for

future work in optimizing deep learning models for complex 3D

object classification challenges.

INTRODUCTION.

Convolutional Neural Networks (CNNs) have revolutionized computer

vision, particularly in image classification and object detection. Inspired

by the human visual system, CNNs have become essential for

recognizing patterns and features in images, playing a pivotal role in

applications such as autonomous vehicles, medical imaging, and

augmented reality. Since the introduction of AlexNet in 2012, CNN

architectures have rapidly evolved, achieving state-of-the-art

performance in tasks that involve multi-category object detection and

classification [10].

While CNNs are powerful due to their hierarchical feature extraction

capabilities, there remains a challenge in designing networks that are

both efficient and effective for specific tasks. One prominent area of

research focuses on recognizing and differentiating specific components

within an image—such as objects, shapes, or colors—at various levels

of detail [11, 12]. Architectures such as AlexNet [10] and ResNet [14]

demonstrated the benefits of deep learning with ReLU activations, max

pooling, and skip connections for extracting and processing fine-grained

information. Other models like VGGNet [13] and YOLO [15] further

improved precision and speed, particularly in tasks that require

localization of multiple parts in a single pass.

 This research addresses the challenge of balancing efficiency and

effectiveness by systematically evaluating different CNN architectures

on a dataset of 3D shapes. By experimenting with various layers and

architectural modifications, the study aims to clarify trade-offs between

model accuracy, computation cost, and generalization—factors crucial

for specialized applications like warehouse robotics or medical

diagnosis. These insights help guide the design of future networks

tailored for efficient 3D object recognition.

KEY TERMINOLOGY.

A CNN typically consists of several types of layers, each playing a

critical role in the network's ability to learn and recognize patterns in

images. The key layers are: convolutional layers, which apply filters to

detect features in the input image; activation layers (like ReLU), which

introduce non-linearity; pooling layers, which reduce spatial dimensions

and extract dominant features; fully connected layers, which perform

high-level reasoning based on the extracted features; and an output layer,

which produces the final prediction or classification. Additionally,

CNNs may incorporate normalization layers to stabilize learning,

dropout layers to prevent overfitting, and various other specialized layers

depending on the specific architecture and task at hand. The following

sections will discuss these layers in more detail. A schematic overview

of this architecture is shown in Figure 1, which is based on canonical

models like AlexNet [10].

Convolutional layers. Convolutional layers are essential components of

CNNs, performing convolution operations on input data using learnable

filters (kernels) to detect features like edges, textures, and shapes. These

layers learn spatial hierarchies by sliding filters over the input and

performing element-wise multiplications followed by summation. The

resulting feature maps are combined through multiple layers to form

more complex patterns. CNN architectures such as those in Krizhevsky

et al.’s AlexNet [10] and subsequent models like ResNet [14] and

VGGNet [13] rely heavily on these layers to capture increasingly

abstract representations of visual features.

Conv2D layers, specifically designed for two-dimensional data like flat

images, take a 3D tensor as input (height, width, channels) for RGB

images or (height, width, 1) for grayscale images [1]. The kernel in

Conv2D is a 2D matrix of weights (e.g., 3x3 or 5x5) applied to each

channel [2]. As the 2D kernel moves across the input, it creates a 2D

activation map representing detected features.

Mathematically, for an input image I and a kernel K, the 2D convolution

operation can be expressed as Eq. 1 where * denotes the convolution

operation, and (i, j) represents the position in the output feature map.

Figure 1. Architectural Overview of a CNN. This schematic illustrates the

sequential structure of a CNN, including convolutional layers, pooling layers,
and fully connected layers. Each component plays a critical role in feature

extraction, dimensionality reduction, and classification. Understanding this

architecture is essential for optimizing CNN performance in 3D object
detection tasks.

(I ∗ K)(i, j) = ∑∑ I(m, n)K(i−m, j−n) (1)

Conv2D layers reduce parameter count via sharing, enabling spatial

invariance where features are detected regardless of position [3]. They

support hierarchical feature learning, capturing more abstract features in

deeper layers, making them effective for tasks like image classification

and object detection [4].

Pooling layers. Pooling layers, typically placed after convolutional

layers, reduce the dimensionality of the data by summarizing the features

within regions of the image, which helps in making the model more

computationally efficient and less sensitive to small shifts or distortions

in the input data. Architectures like VGGNet [13] and various object

recognition systems have long utilized max pooling to preserve key

spatial information while reducing computation. Although some recent

models have experimented with removing pooling layers altogether [12],

max pooling remains widely used due to its simplicity and its mimicry

of biological vision processes.

Fully connected layers. Finally, the fully connected layers at the end of

the network take the high-level features extracted by the convolutional

and pooling layers and use them to make predictions. This could be

anything from identifying an object in an image to classifying it into one

of several categories. CNNs have proven highly effective in a variety of

applications, including image and video recognition, medical image

analysis, and even natural language processing tasks. These layers are

especially crucial in models like YOLO and Mask R-CNN [15, 16],

where the network must output decisions based on a combination of

spatial and contextual features.

Dropout and Linear Layers. In CNNs, linear layers (also called fully

connected layers) are used after the convolutional and pooling layers to

learn complex patterns by connecting every neuron from the previous

layer to each neuron in the current layer, effectively capturing higher-

level features for classification or regression tasks. Dropout is a

regularization technique used to prevent overfitting in neural networks

by randomly "dropping out" a fraction of the neurons during training,

which forces the network to learn more robust and generalizable features

by not relying on any single neuron or path for making predictions. This

technique has been particularly effective in deeper models such as those

developed for the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [10].

Batch Normalization. Batch Normalization (BatchNorm) is a technique

introduced to address the internal covariate shift problem in deep neural

networks, thereby improving the stability and performance of these

networks [5]. The internal covariate shift refers to the change in the

distribution of network activations due to the change in network

parameters during training. BatchNorm aims to reduce this shift by

normalizing the inputs of each layer. A BatchNorm layer normalizes the

input by subtracting the batch mean and dividing by the batch standard

deviation. It then scales and shifts the result using two learnable

parameters, gamma and beta.

In the context of CNNs, BatchNorm2D is specifically designed to work

with 2D inputs, such as images or feature maps [6]. When applied to a

Conv2D layer in a CNN, BatchNorm2D normalizes each feature map

independently. This means that for an input with shape (batch-size,

channels, height, width), BatchNorm2D will compute and apply the

mean and variance for each channel across the batch, height, and width

dimensions. The use of BatchNorm2D in CNNs offers several

advantages: it allows higher learning rates, potentially accelerating the

training process; it reduces the dependency on careful initialization of

the network weights; and it acts as a regularizer, in some cases

eliminating the need for Dropout [7].

During inference, BatchNorm2D uses a moving average of the mean and

variance computed during training, ensuring consistent normalization

even when processing single images. While BatchNorm has become a

standard component in many CNN architectures, it's worth noting that

alternatives like Layer Normalization or Group Normalization have been

proposed for specific use cases or to address certain limitations of

BatchNorm [8]. These variations on the normalization theme continue

to be an active area of research in deep learning, as practitioners seek to

optimize network performance across a wide range of applications and

architectures.

Max Pooling. Max pooling is a downsampling technique commonly

used in CNNs to reduce the spatial dimensions of the feature maps while

retaining the most important information [9] . The primary purpose of

max pooling is to achieve spatial invariance to small translations in the

input, reduce computational complexity, and control overfitting. In a

max pooling operation, the input feature map is divided into non-

overlapping rectangular regions, and for each such region, the maximum

value is output to the next layer. This process effectively reduces the

resolution of the feature map while preserving the most prominent

features detected by the previous convolutional layers.

The most common form of max pooling used in CNNs is 2D max

pooling, which operates on 2D feature maps produced by convolutional

layers [10]. A typical 2D max pooling layer is characterized by its pool

size (usually 2x2) and stride (often equal to the pool size for non-

overlapping pooling). For example, a 2x2 max pooling with a stride of 2

will reduce both the height and width of the input feature map by half.

This reduction in spatial dimensions leads to a decrease in the number

of parameters in the subsequent layers, which helps in controlling

overfitting and reduces the computational cost of the network.

Additionally, max pooling introduces a form of translational invariance,

making the network more robust to small spatial shifts in the input [11].

While max pooling has been widely adopted in many successful CNN

architectures, it's worth noting that alternative pooling methods exist,

such as average pooling or strided convolutions. Some recent

architectures have even experimented with removing pooling layers

altogether, relying instead on increased stride in convolutional layers to

achieve downsampling [12]. However, max pooling remains a popular

choice due to its simplicity, effectiveness, and biological plausibility, as

it mimics certain aspects of the human visual cortex. As CNNs continue

to evolve, the role and implementation of pooling layers remain active

areas of research in the deep learning community.

METHODS.

In this study, a CNN was utilized for object detection and classification

of different 3D shapes from a dataset. The dataset used in this study is

the "shapes3d" dataset from Google DeepMind [17, 18], which contains

480,000 labeled images of four different shapes: cube, sphere, cylinder,

and ellipsoid. Each image represents a 3D shape from different

perspectives, providing a comprehensive set of examples for training a

deep learning model. The goal was to develop a model that could predict

and categorize these shapes accurately based on the input images. The

dataset was split randomly into two parts: 80% for training and 20% for

testing. The 80% training set was used to teach the model to recognize

and differentiate between the shapes, while the 20% test set was used to

evaluate the model's performance and its ability to generalize to unseen

data.

The baseline architecture of the CNN consisted of multiple

convolutional layers, each followed by ReLU activation functions and

pooling layers. To improve the model's performance and explore its

robustness, I made several modifications to the original architecture.

Firstly, I experimented with the number of layers by adding more fully

connected (linear) layers and removing some Batch Normalization

(BatchNorm2D) layers. The objective was to understand how deeper

architectures and the removal of certain normalization techniques affect

the learning dynamics and generalization of the model.

I also experimented with varying kernel sizes in the convolutional layers.

The goal was to identify the optimal kernel size that would capture the

most relevant features of the 3D shapes while balancing computational

efficiency. Different kernel sizes, ranging from smaller (2x2) to larger

(6x6), were tested to observe their impact on model accuracy. Moreover,

I adjusted the dropout levels within the network to prevent overfitting

and improve generalization. By increasing and decreasing dropout rates

at various layers, I assessed their influence on the overall classification

accuracy.

The results of these modifications were evaluated based on classification

accuracy. By systematically altering these parameters—such as the

number of layers, kernel sizes, and dropout rates—I was able to identify

a configuration that provided the optimal balance between model

complexity and performance. The findings demonstrated that specific

combinations of these parameters significantly enhanced the model's

accuracy, providing insights into the optimal design choices for CNN

architectures applied to 3D object classification tasks.

RESULTS.

The experiments conducted to optimize the CNN architecture for 3D

shape classification revealed significant insights into the impact of

different architectural changes on model performance.

The first experiment focused on understanding the impact of the

different layers, as summarized in Table 1. The nomenclature is x (y)

where x represents the number of classification layers, while y signifies

the number of required dropout and linear layers. The removal of the

Batch Normalization (BatchNorm2D) layer had a substantial negative

impact on the model's performance. Without BatchNorm, the model

struggled to learn effectively and tended to make random guesses for

categorization, leading to an accuracy of about 25 percent. This suggests

that Batch Normalization plays a critical role in stabilizing the learning

process and ensuring better convergence. Furthermore, adding more

linear layers to the network also led to a reduction in accuracy, likely

due to overfitting or vanishing gradient problems associated with deeper

architectures. However, keeping ReLU activation functions in the

network was essential for achieving near-perfect accuracy, as they

helped maintain non-linearity and avoid issues like vanishing gradients.

The effect of varying dropout rates on model accuracy was also tested.

Gradually increasing the dropout rate beyond a certain threshold caused

the model's accuracy to decline (Figure 2). This is likely because higher

dropout rates lead to excessive regularization, which prevents the model

from learning important patterns in the data. Among the values tried, the

best dropout rate was found to be 0.1, where the model maintained a

balance between preventing overfitting and retaining sufficient feature

learning, resulting in the highest accuracy.

Finally, the effect of kernel size in the convolutional layers was

examined. It was observed that a kernel size of 5 produced the most

accurate results for the model (Figure 3). Initially increasing the kernel

size improved the model accuracy as the kernel was able to capture the

context. When the kernel size was increased to 6 or more though, the

model's accuracy began to drop marginally. This drop in performance

could be attributed to larger kernels capturing more irrelevant

information or noise, thereby reducing the model's ability to focus on the

most salient features of the 3D shapes.

These results demonstrate the importance of carefully tuning the

architecture and hyperparameters of CNNs for optimal performance in

object detection and classification tasks. Parameters such as dropout

rates, kernel sizes, and the inclusion of normalization layers are crucial

in determining the model's ability to generalize well to unseen data.

CONCLUSION.

This study explored the use of CNNs for object detection and

classification of 3D shapes, focusing on how various architectural

modifications and hyperparameter adjustments affect model

performance. The results demonstrated that careful tuning of parameters

such as dropout rates, kernel sizes, and the inclusion of Batch

Normalization layers significantly impacts the accuracy of the model.

An optimal dropout rate of 0.1 was identified, as higher rates led to over-

regularization and reduced accuracy. Similarly, a kernel size of 5 was

found to be the most effective, while larger kernels caused a decline in

performance due to the model capturing irrelevant features. The removal

of Batch Normalization layers resulted in drastic accuracy drops,

Table 1. Effect of different layers on accuracy.

Layers Accuracy Notes

3 (3) 99.61% conv2d, batchnorm2d, maxpool2d, (dropout,
linear, linear)

3 (2) 99.80% conv2d, batchnorm2d, maxpool2d, (dropout,
linear)

2 (2) 25.03% conv2d, maxpool2d, (dropout, linear)

Figure 2. Effect of Dropout Rate on CNN Accuracy. This plot shows how

varying the dropout rate impacts the model’s accuracy on 3D object

classification. The results highlight that a dropout rate of 0.1 yields the highest
accuracy by balancing overfitting prevention and feature learning retention.

Higher dropout rates negatively affect performance due to excessive
regularization.

Figure 3. Effect of Kernel Size on CNN Accuracy. This graph depicts the

model accuracy for different convolutional kernel sizes. A kernel size of 5

provides the best accuracy, suggesting it offers an optimal trade-off between
capturing local features and maintaining sufficient context. Smaller kernels
miss broader patterns, while larger kernels dilute feature relevance.

highlighting their importance in stabilizing learning and improving

convergence.

These findings underscore the need for a balanced and methodical

approach when designing CNN architectures for 3D object classification

tasks. Future work could involve exploring advanced techniques such as

transfer learning, more complex architectures like Residual Networks

(ResNets), or employing other regularization methods to further enhance

performance. Overall, this research contributes valuable insights into the

optimal design and parameter choices for CNN-based 3D shape

classification, paving the way for more efficient and accurate models in

similar applications.

ACKNOWLEDGMENTS.

I am thankful to Joshua Fernandez (Georgia Institute of Technology) for

his valuable guidance and mentorship.

REFERENCES

1 B. Kim, Y. Natarajan, S. D. Munisamy, A. Rajendran, K. R. Sri Preethaa,

D. E. Lee, G. Wadhwa, Deep learning activation layer-based wall quality

recognition using Conv2D ResNet exponential transfer learning model.

Mathematics 10, 4602 (2022).

2 S. Kundu, S. Prakash, H. Akrami, P. A. Beerel, K. M. Chugg, psconv: A

pre-defined sparse kernel-based convolution for deep cnns. In 2019 57th

Annual Allerton Conference on Communication, Control, and Computing

(Allerton), IEEE, pp. 100-107 (2019).

3 Z.-Q. Cheng, Q. Dai, H. Li, J. Song, X. Wu, A. G. Hauptmann, Rethinking

spatial invariance of convolutional networks for object counting. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 19638-19648 (2022).

4 S. Sophia, et al., Human behaviour and abnormality detection using yolo

and conv2d net. In 2024 International Conference on Inventive Computation

Technologies (ICICT), IEEE, pp. 70-75 (2024).

5 S. Ioffe, Batch normalization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).

6 Y. Wu, K. He, Group normalization. In Proceedings of the European

Conference on Computer Vision (ECCV), pp. 3-19 (2018).

7 S. Santurkar, D. Tsipras, A. Ilyas, A. Madry, How does batch

normalization help optimization? Advances in Neural Information

Processing Systems 31 (2018).

8 J. Ba, Layer normalization. arXiv preprint arXiv:1607.06450 (2016).

9 D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in

convolutional architectures for object recognition. In International

Conference on Artificial Neural Networks, Springer, pp. 92-101 (2010).

10 A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with

deep convolutional neural networks. Advances in Neural Information

Processing Systems 25 (2012).

11 I. Goodfellow, Deep Learning, MIT Press (2016).

12 J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for

simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806

(2014).

13 K. Simonyan, Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556 (2014).

14 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 770-778 (2016).

15 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once:

Unified, real-time object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 779-788 (2016).

16 K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn. In Proceedings

of the IEEE International Conference on Computer Vision, pp. 2961-2969

(2017).

17 C. Burgess, H. Kim, 3d shapes dataset. https://github.com/deepmind

/3dshapes-dataset/ (2018).

18 C. Burgess, H. Kim, 3d shapes dataset. https://tensorflow.org/datasets

/catalog/shapes3d/ (2018).

Amogh Gupta is a student at

Saratoga High School in Saratoga,

California. This research was

performed with guidance from

Lumiere Education.

