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BRIEF. Understanding the impact of kernel size, dropout ratios, and convolutional layers on a vision model’s performance.

ABSTRACT. This paper investigates the use of Convolutional 

Neural Networks (CNNs) for object detection and classification of 

3D shapes from a dataset, with a focus on optimizing model 

performance through architectural and hyperparameter adjustments. 

Various modifications were applied to the CNN, including altering 

the number of layers, adjusting kernel sizes, modifying dropout 

rates, and removing Batch Normalization layers. Experimental 

results demonstrated that an optimal dropout rate of 0.1 maintained 

high accuracy, while kernel sizes of 5 were most effective for feature 

extraction. Removing Batch Normalization drastically reduced 

accuracy to 25 percent, revealing its critical role in stabilizing 

learning. The study highlights the importance of tuning CNN 

parameters for achieving robust and accurate classification in 3D 

shape recognition tasks. These insights provide a foundation for 

future work in optimizing deep learning models for complex 3D 

object classification challenges. 

INTRODUCTION.  

Convolutional Neural Networks (CNNs) have revolutionized computer 

vision, particularly in image classification and object detection. Inspired 

by the human visual system, CNNs have become essential for 

recognizing patterns and features in images, playing a pivotal role in 

applications such as autonomous vehicles, medical imaging, and 

augmented reality. Since the introduction of AlexNet in 2012, CNN 

architectures have rapidly evolved, achieving state-of-the-art 

performance in tasks that involve multi-category object detection and 

classification [10]. 

While CNNs are powerful due to their hierarchical feature extraction 

capabilities, there remains a challenge in designing networks that are 

both efficient and effective for specific tasks. One prominent area of 

research focuses on recognizing and differentiating specific components 

within an image—such as objects, shapes, or colors—at various levels 

of detail [11, 12]. Architectures such as AlexNet [10] and ResNet [14] 

demonstrated the benefits of deep learning with ReLU activations, max 

pooling, and skip connections for extracting and processing fine-grained 

information. Other models like VGGNet [13] and YOLO [15] further 

improved precision and speed, particularly in tasks that require 

localization of multiple parts in a single pass. 

 This research addresses the challenge of balancing efficiency and 

effectiveness by systematically evaluating different CNN architectures 

on a dataset of 3D shapes. By experimenting with various layers and 

architectural modifications, the study aims to clarify trade-offs between 

model accuracy, computation cost, and generalization—factors crucial 

for specialized applications like warehouse robotics or medical 

diagnosis. These insights help guide the design of future networks 

tailored for efficient 3D object recognition. 

KEY TERMINOLOGY. 

A CNN typically consists of several types of layers, each playing a 

critical role in the network's ability to learn and recognize patterns in 

images. The key layers are: convolutional layers, which apply filters to 

detect features in the input image; activation layers (like ReLU), which 

introduce non-linearity; pooling layers, which reduce spatial dimensions 

and extract dominant features; fully connected layers, which perform 

high-level reasoning based on the extracted features; and an output layer, 

which produces the final prediction or classification. Additionally, 

CNNs may incorporate normalization layers to stabilize learning, 

dropout layers to prevent overfitting, and various other specialized layers 

depending on the specific architecture and task at hand. The following 

sections will discuss these layers in more detail. A schematic overview 

of this architecture is shown in Figure 1, which is based on canonical 

models like AlexNet [10]. 

Convolutional layers. Convolutional layers are essential components of 

CNNs, performing convolution operations on input data using learnable 

filters (kernels) to detect features like edges, textures, and shapes. These 

layers learn spatial hierarchies by sliding filters over the input and 

performing element-wise multiplications followed by summation. The 

resulting feature maps are combined through multiple layers to form 

more complex patterns. CNN architectures such as those in Krizhevsky 

et al.’s AlexNet [10] and subsequent models like ResNet [14] and 

VGGNet [13] rely heavily on these layers to capture increasingly 

abstract representations of visual features. 

Conv2D layers, specifically designed for two-dimensional data like flat 

images, take a 3D tensor as input (height, width, channels) for RGB 

images or (height, width, 1) for grayscale images [1]. The kernel in 

Conv2D is a 2D matrix of weights (e.g., 3x3 or 5x5) applied to each 

channel [2]. As the 2D kernel moves across the input, it creates a 2D 

activation map representing detected features. 

Mathematically, for an input image I and a kernel K, the 2D convolution 

operation can be expressed as Eq. 1 where * denotes the convolution 

operation, and (i, j) represents the position in the output feature map. 

 

Figure 1. Architectural Overview of a CNN. This schematic illustrates the 

sequential structure of a CNN, including convolutional layers, pooling layers, 
and fully connected layers. Each component plays a critical role in feature 

extraction, dimensionality reduction, and classification. Understanding this 

architecture is essential for optimizing CNN performance in 3D object 
detection tasks. 



 

(I ∗ K)(i, j) = ∑∑ I(m, n)K(i−m, j−n) (1) 

Conv2D layers reduce parameter count via sharing, enabling spatial 

invariance where features are detected regardless of position [3]. They 

support hierarchical feature learning, capturing more abstract features in 

deeper layers, making them effective for tasks like image classification 

and object detection [4]. 

Pooling layers. Pooling layers, typically placed after convolutional 

layers, reduce the dimensionality of the data by summarizing the features 

within regions of the image, which helps in making the model more 

computationally efficient and less sensitive to small shifts or distortions 

in the input data. Architectures like VGGNet [13] and various object 

recognition systems have long utilized max pooling to preserve key 

spatial information while reducing computation. Although some recent 

models have experimented with removing pooling layers altogether [12], 

max pooling remains widely used due to its simplicity and its mimicry 

of biological vision processes. 

Fully connected layers. Finally, the fully connected layers at the end of 

the network take the high-level features extracted by the convolutional 

and pooling layers and use them to make predictions. This could be 

anything from identifying an object in an image to classifying it into one 

of several categories. CNNs have proven highly effective in a variety of 

applications, including image and video recognition, medical image 

analysis, and even natural language processing tasks. These layers are 

especially crucial in models like YOLO and Mask R-CNN [15, 16], 

where the network must output decisions based on a combination of 

spatial and contextual features. 

Dropout and Linear Layers. In CNNs, linear layers (also called fully 

connected layers) are used after the convolutional and pooling layers to 

learn complex patterns by connecting every neuron from the previous 

layer to each neuron in the current layer, effectively capturing higher-

level features for classification or regression tasks. Dropout is a 

regularization technique used to prevent overfitting in neural networks 

by randomly "dropping out" a fraction of the neurons during training, 

which forces the network to learn more robust and generalizable features 

by not relying on any single neuron or path for making predictions. This 

technique has been particularly effective in deeper models such as those 

developed for the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) [10]. 

Batch Normalization. Batch Normalization (BatchNorm) is a technique 

introduced to address the internal covariate shift problem in deep neural 

networks, thereby improving the stability and performance of these 

networks [5]. The internal covariate shift refers to the change in the 

distribution of network activations due to the change in network 

parameters during training. BatchNorm aims to reduce this shift by 

normalizing the inputs of each layer. A BatchNorm layer normalizes the 

input by subtracting the batch mean and dividing by the batch standard 

deviation. It then scales and shifts the result using two learnable 

parameters, gamma and beta. 

In the context of CNNs, BatchNorm2D is specifically designed to work 

with 2D inputs, such as images or feature maps [6]. When applied to a 

Conv2D layer in a CNN, BatchNorm2D normalizes each feature map 

independently. This means that for an input with shape (batch-size, 

channels, height, width), BatchNorm2D will compute and apply the 

mean and variance for each channel across the batch, height, and width 

dimensions. The use of BatchNorm2D in CNNs offers several 

advantages: it allows higher learning rates, potentially accelerating the 

training process; it reduces the dependency on careful initialization of 

the network weights; and it acts as a regularizer, in some cases 

eliminating the need for Dropout [7]. 

During inference, BatchNorm2D uses a moving average of the mean and 

variance computed during training, ensuring consistent normalization 

even when processing single images. While BatchNorm has become a 

standard component in many CNN architectures, it's worth noting that 

alternatives like Layer Normalization or Group Normalization have been 

proposed for specific use cases or to address certain limitations of 

BatchNorm [8]. These variations on the normalization theme continue 

to be an active area of research in deep learning, as practitioners seek to 

optimize network performance across a wide range of applications and 

architectures. 

Max Pooling. Max pooling is a downsampling technique commonly 

used in CNNs to reduce the spatial dimensions of the feature maps while 

retaining the most important information [9] . The primary purpose of 

max pooling is to achieve spatial invariance to small translations in the 

input, reduce computational complexity, and control overfitting. In a 

max pooling operation, the input feature map is divided into non-

overlapping rectangular regions, and for each such region, the maximum 

value is output to the next layer. This process effectively reduces the 

resolution of the feature map while preserving the most prominent 

features detected by the previous convolutional layers. 

The most common form of max pooling used in CNNs is 2D max 

pooling, which operates on 2D feature maps produced by convolutional 

layers [10]. A typical 2D max pooling layer is characterized by its pool 

size (usually 2x2) and stride (often equal to the pool size for non-

overlapping pooling). For example, a 2x2 max pooling with a stride of 2 

will reduce both the height and width of the input feature map by half. 

This reduction in spatial dimensions leads to a decrease in the number 

of parameters in the subsequent layers, which helps in controlling 

overfitting and reduces the computational cost of the network. 

Additionally, max pooling introduces a form of translational invariance, 

making the network more robust to small spatial shifts in the input [11]. 

While max pooling has been widely adopted in many successful CNN 

architectures, it's worth noting that alternative pooling methods exist, 

such as average pooling or strided convolutions. Some recent 

architectures have even experimented with removing pooling layers 

altogether, relying instead on increased stride in convolutional layers to 

achieve downsampling [12]. However, max pooling remains a popular 

choice due to its simplicity, effectiveness, and biological plausibility, as 

it mimics certain aspects of the human visual cortex. As CNNs continue 

to evolve, the role and implementation of pooling layers remain active 

areas of research in the deep learning community. 

METHODS.  

In this study, a CNN was utilized for object detection and classification 

of different 3D shapes from a dataset. The dataset  used in this study is 

the "shapes3d" dataset from Google DeepMind [17, 18], which contains 

480,000 labeled images of four different shapes: cube, sphere, cylinder, 

and ellipsoid. Each image represents a 3D shape from different 

perspectives, providing a comprehensive set of examples for training a 

deep learning model. The goal was to develop a model that could predict 

and categorize these shapes accurately based on the input images. The 

dataset was split randomly into two parts: 80% for training and 20% for 

testing. The 80% training set was used to teach the model to recognize 

and differentiate between the shapes, while the 20% test set was used to 

evaluate the model's performance and its ability to generalize to unseen 

data. 

The baseline architecture of the CNN consisted of multiple 

convolutional layers, each followed by ReLU activation functions and 

pooling layers. To improve the model's performance and explore its 

robustness, I made several modifications to the original architecture. 

Firstly, I experimented with the number of layers by adding more fully 

connected (linear) layers and removing some Batch Normalization 

(BatchNorm2D) layers. The objective was to understand how deeper 

architectures and the removal of certain normalization techniques affect 

the learning dynamics and generalization of the model. 



 

I also experimented with varying kernel sizes in the convolutional layers. 

The goal was to identify the optimal kernel size that would capture the 

most relevant features of the 3D shapes while balancing computational 

efficiency. Different kernel sizes, ranging from smaller (2x2) to larger 

(6x6), were tested to observe their impact on model accuracy. Moreover, 

I adjusted the dropout levels within the network to prevent overfitting 

and improve generalization. By increasing and decreasing dropout rates 

at various layers, I assessed their influence on the overall classification 

accuracy. 

The results of these modifications were evaluated based on classification 

accuracy. By systematically altering these parameters—such as the 

number of layers, kernel sizes, and dropout rates—I was able to identify 

a configuration that provided the optimal balance between model 

complexity and performance. The findings demonstrated that specific 

combinations of these parameters significantly enhanced the model's 

accuracy, providing insights into the optimal design choices for CNN 

architectures applied to 3D object classification tasks. 

RESULTS. 

The experiments conducted to optimize the CNN architecture for 3D 

shape classification revealed significant insights into the impact of 

different architectural changes on model performance. 

The first experiment focused on understanding the impact of the 

different layers, as summarized in Table 1. The nomenclature is x (y) 

where x represents the number of classification layers, while y signifies 

the number of required dropout and linear layers. The removal of the 

Batch Normalization (BatchNorm2D) layer had a substantial negative 

impact on the model's performance. Without BatchNorm, the model 

struggled to learn effectively and tended to make random guesses for 

categorization, leading to an accuracy of about 25 percent. This suggests 

that Batch Normalization plays a critical role in stabilizing the learning 

process and ensuring better convergence. Furthermore, adding more 

linear layers to the network also led to a reduction in accuracy, likely 

due to overfitting or vanishing gradient problems associated with deeper 

architectures. However, keeping ReLU activation functions in the 

network was essential for achieving near-perfect accuracy, as they 

helped maintain non-linearity and avoid issues like vanishing gradients. 

 

The effect of varying dropout rates on model accuracy was also tested. 

Gradually increasing the dropout rate beyond a certain threshold caused 

the model's accuracy to decline (Figure 2). This is likely because higher 

dropout rates lead to excessive regularization, which prevents the model 

from learning important patterns in the data. Among the values tried, the 

best dropout rate was found to be 0.1, where the model maintained a 

balance between preventing overfitting and retaining sufficient feature 

learning, resulting in the highest accuracy. 

Finally, the effect of kernel size in the convolutional layers was 

examined. It was observed that a kernel size of 5 produced the most 

accurate results for the model (Figure 3). Initially increasing the kernel 

size improved the model accuracy as the kernel was able to capture the 

context. When the kernel size was increased to 6 or more though, the 

model's accuracy began to drop marginally. This drop in performance 

could be attributed to larger kernels capturing more irrelevant 

information or noise, thereby reducing the model's ability to focus on the 

most salient features of the 3D shapes. 

These results demonstrate the importance of carefully tuning the 

architecture and hyperparameters of CNNs for optimal performance in 

object detection and classification tasks. Parameters such as dropout 

rates, kernel sizes, and the inclusion of normalization layers are crucial 

in determining the model's ability to generalize well to unseen data. 

CONCLUSION. 

This study explored the use of CNNs for object detection and 

classification of 3D shapes, focusing on how various architectural 

modifications and hyperparameter adjustments affect model 

performance. The results demonstrated that careful tuning of parameters 

such as dropout rates, kernel sizes, and the inclusion of Batch 

Normalization layers significantly impacts the accuracy of the model. 

An optimal dropout rate of 0.1 was identified, as higher rates led to over-

regularization and reduced accuracy. Similarly, a kernel size of 5 was 

found to be the most effective, while larger kernels caused a decline in 

performance due to the model capturing irrelevant features. The removal 

of Batch Normalization layers resulted in drastic accuracy drops, 

Table 1. Effect of different layers on accuracy. 

Layers Accuracy Notes 

3 (3) 99.61% conv2d, batchnorm2d, maxpool2d, (dropout, 
linear, linear) 

3 (2) 99.80% conv2d, batchnorm2d, maxpool2d, (dropout, 
linear) 

2 (2) 25.03% conv2d, maxpool2d, (dropout, linear) 

 
Figure 2. Effect of Dropout Rate on CNN Accuracy. This plot shows how 

varying the dropout rate impacts the model’s accuracy on 3D object 

classification. The results highlight that a dropout rate of 0.1 yields the highest 
accuracy by balancing overfitting prevention and feature learning retention. 

Higher dropout rates negatively affect performance due to excessive 
regularization. 
 

 

Figure 3. Effect of Kernel Size on CNN Accuracy. This graph depicts the 

model accuracy for different convolutional kernel sizes. A kernel size of 5 

provides the best accuracy, suggesting it offers an optimal trade-off between 
capturing local features and maintaining sufficient context. Smaller kernels 
miss broader patterns, while larger kernels dilute feature relevance. 



 

highlighting their importance in stabilizing learning and improving 

convergence. 

These findings underscore the need for a balanced and methodical 

approach when designing CNN architectures for 3D object classification 

tasks. Future work could involve exploring advanced techniques such as 

transfer learning, more complex architectures like Residual Networks 

(ResNets), or employing other regularization methods to further enhance 

performance. Overall, this research contributes valuable insights into the 

optimal design and parameter choices for CNN-based 3D shape 

classification, paving the way for more efficient and accurate models in 

similar applications. 
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