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BRIEF. Comparison and analysis of different Machine Learning and Deep Learning models for detection of Brain tumors in MRI scans. 

ABSTRACT. This study explores the application of machine 
learning and deep learning models to detect and classify brain tu-
mors in MRI scans, aiming to enhance diagnostic accuracy and ef-
ficiency. Recognizing the challenges radiologists face—such as 
time-consuming analysis and the risk of missed tumors—we em-
ployed two distinct datasets: one for binary classification (tumor 
presence) with 253 low-resolution images and another for mul-
ticlass classification (tumor type) with 5,712 high-resolution im-
ages of pituitary tumors, gliomas, meningiomas, and controls. We 
trained and evaluated multiple machine learning algorithms—in-
cluding Random Forest, K-Nearest Neighbors (KNN), Logistic 
Regression, and Gaussian Naive-Bayes—as well as neural net-
works like Multi-Layer Perceptron (MLP) and Convolutional Neu-
ral Networks (CNN). CNNs showed significant potential due to 
their ability to extract spatial features from images, achieving the 
highest accuracy of 90.2% for binary and 88.9% for multiclass 
classification. The Random Forest classifier also achieved high ac-
curacy and strong recall rates, indicating robust tumor detection 
capabilities. KNN exhibited the highest sensitivity, thus minimiz-
ing false negatives. These results suggest that integrating machine 
learning models like Random Forest and CNNs into clinical prac-
tice could greatly help radiologists accurately detect and classify 
brain tumors, resulting in improved patient outcomes. 

INTRODUCTION.  

A brain tumor is an abnormal growth of cells in or around the brain. It 
can be benign (non-cancerous) or malignant (cancerous). Regardless 
of its benign or malignant nature, a brain tumor may alter brain func-
tion, thereby impacting health. It may present itself through headaches 
or seizures and can lead to paralysis or even death. The survival rate 
of patients diagnosed with brain tumors depends on the tumor's loca-
tion and grade. The mean five-year survival rate in the US population 
with malignant tumors is 33.4% [1]. 

Radiologists worldwide primarily use images from Magnetic Reso-
nance Imaging (MRI) scans to detect tumors in the brain. However, 
detecting brain tumors is a complex and time-consuming task. Radiol-
ogists are often burdened with long queues of scans to read. This re-
sults in them having to go through many normal (non-tumor) scans 
before coming across a case that has a tumor. Ideally, radiologists 
would prefer to quickly dispose of negative cases and then spend more 
time on positive cases to make a specific diagnosis and classify the 
tumor. 

Artificial intelligence (AI) can be a vital tool for radiologists to over-
come the above challenges. It can quickly identify supposed positive 
cases and 'flag' them so that radiologists can prioritize their reading of 
these cases, spending more time making a diagnosis and grading the 
tumor.  

Currently, most research on utilizing Artificial Intelligence to identify 
brain tumors focuses exclusively on neural networks [2]. However, 
this approach is inadequate to truly identify the most suitable model 
for clinical use. For this, an evaluation of the performance of these 
neural networks is needed, along with their comparison to conven-
tional Machine Learning models. Additionally, there is a need to test 
these models on a large dataset, similar to a real-life clinical setting, in 
order to ensure their performance scales with larger amounts of data.  

The above two objectives are the focus of our research. We used two 
datasets, one small and one large, to compare and analyze the various 
models and determine the most effective overall method for brain tu-
mor detection and classification, employing metrics such as overall 
accuracy [3] and recall score [4]. 

MATERIALS AND METHODS.  

Implementation. All models in this study were trained and tested on 
Google Colab, an online hosted Jupyter Notebook service that pro-
vides access to computing resources, including CPUs and GPUs. Spe-
cifically, a runtime on the Google Colab website was created using 
Python 3.10 with the following resources: T4 GPU, 13 GB System 
RAM, and 112 GB disk.  

Datasets. This research was carried out in two steps, using two distinct 
datasets. The first dataset, which was used for binary classification 
(screening for positive vs negative cases) of axial MRI images, was 
provided by Inspirit AI Inc.  It contained 253 axial images. The images 
in this dataset were of two types - 155 positive images (containing a 
brain tumor) and 98 negative images (without any brain tumor). 80% 
of these images (202 images) were used to train the models, while the 
remaining 20% (51 images) were set aside for testing. This dataset 
consisted of low-resolution images for a faster runtime. The second 
dataset [5] was larger. It was used to broadly classify brain tumors into 
three types - Pituitary tumor, Intra-axial brain tumor (Glioma), or 
Meningioma, and was a combination of publicly available health da-
tasets taken from the online Machine Learning library - Kaggle [6]. It 
consisted of 5,712 images of four types - 1,457 images containing a 
pituitary tumor, 1321 images of intra-axial brain tumors (Gliomas), 
1,339 images of Meningioma, and 1,595 images containing no tumor 
(control). 80% of these images (4,570 images) were used to train the 
models, while the remaining 20% (1,142 images) were set aside for 
testing. This dataset consisted of high-resolution images to improve 
the accuracy of classification. A summary of these datasets is provided 
in Table 1. 

Table 1. Summary of the datasets used.  
Dataset No. of Images Categories Use 
Dataset 1 253 Tumor  Binary screen-

ing/ Flagging No Tumor 
Dataset 2 5712 Pituitary Tumor Classification 

into tumor 
types 

Meningioma 
Intra-axial tumor(Gli-
oma) 
No tumor 



 

Methodology. The first dataset - to be used for binary classification - 
was preprocessed and split for training (80%) and testing (20%). Mul-
tiple ML models and Neural Networks were trained and tested on this 
dataset. The accuracy of these different models was compared to select 
the best-performing model/network for the study. Then, a second da-
taset - to be used for broad classification into three brain tumor types 
- was preprocessed and split for training (80%) and testing (20%).  The 
same steps were also carried out for the second dataset. 

Data Preprocessing. The images in both datasets had to be optimized 
before being used in ML models. The first step involved changing the 
images to grayscale (1 color channel) from Red, Green, and Blue (3 
color channels). No data was lost during this step and it was done to 
decrease the complexity in the design of the ML models, resulting in 
faster training. Grayscaling was done by accessing the color pro-
cessing functionalities provided by the color module within the 
skimage package.  

In the second step, the range of pixel intensity values was made con-
stant across all images to be between 0 and 1 (normalization) (Fig. 1). 
This was done to ensure that the algorithm would not overfit based on 
unrelated differences between classes, such as different brightnesses, 
which can be technical artefacts rather than an actual tumor. [7, 8] 

 
Figure 1. Data Image Preprocessing – Normalization of pixel intensities. 
(A) Example of original image in 150x150 pixels. (B) Normalization of all 
images to span O to 1. Note changes in pixel intensity at red arrows. 

Third, data augmentation was performed on the first dataset to double 
the number of images by transforming (horizontally flipping) the pre-
existing ones (Fig. 2). This was done to help the ML models learn to 
detect tumors irrespective of their location in the brain or the scan. The 
images in the second dataset were cropped to eliminate the blank back-
ground as much as possible by automatically detecting the edges of 
the brain scan.  

 
Figure 2. Data Augmentation in the first dataset – creating new images by 
horizontally flipping pre-existing ones. (A) Example of original image in 
150x150 pixels. (B) Image flipped horizontally to make a new image. 

 
In the final preprocessing step, all images were flattened before being 
used for training and testing. Flattening involved converting the two-
dimensional image into a one-dimensional array so the ML models 
could process it. 

Machine Learning Models Used.  

Random Forest Classifier. Random Forest is a robust ensemble learn-
ing algorithm widely employed in machine learning for classification 
and regression tasks. Its advantage is that it utilizes a collection of de-
cision trees, each contributing to its prediction. By exploiting the wis-
dom of multiple trees, Random Forest alleviates the risk of overfitting 
and enhances predictive accuracy [9]. It was imported from the 
sklearn.ensemble package. 

K-Nearest Neighbors (KNN). The K-Nearest Neighbors (KNN) algo-
rithm is a straightforward ML technique for classification and regres-
sion. It stores all available cases and classifies new instances based on 
a similarity measure (e.g., distance functions). K-NN identifies the 'k' 
closest data points in the training set for new input and assigns the 
input to the most common category [10]. The classifier was imported 
from the sklearn.neighbors package. 

Logistic Regression. Logistic regression is a statistical method used 
for binary classification problems where the goal is to predict one of 
two possible outcomes. It models the probability that a given input 
belongs to a particular category by fitting a logistic function (sigmoid) 
to the data. The algorithm estimates the coefficients for each feature 
through maximum likelihood estimation, transforming the input fea-
tures into a value between 0 and 1. This probability is then thresholded 
to decide the class label: values above 0.5 indicate one class, while 
values below indicate the other [11]. It is imported from the 
sklearn.linear_model package. 

Gaussian Naive-Bayes (GNB). Gaussian Naive Bayes assumes a bell-
shaped distribution in the data. It calculates the probability of each 
class for unseen data using these distributions and Bayes' theorem. A 
downside to this algorithm is its assumption of independent features, 
which may not always hold. GaussianNB was imported from the 
sklearn.naive_bayes package. 

Neural Networks Used. 

Multi-Layer Perceptron (MLP). A Multi-Layer Perceptron (MLP) is a 
computational model inspired by how biological neural networks 
work in the human brain. It consists of layers of interconnected nodes 
(neurons), where each connection has an associated weight. The net-
work typically has an input layer, one or more hidden layers, and an 
output layer. When data is fed into the input layer, it gets processed 
through the hidden layers, where the neurons apply a weighted sum of 
their inputs followed by a non-linear activation function [12]. The final 
output layer produces the prediction. It was imported from the 
sklearn.neural_network package. 

Convolutional Neural Network (CNN). A Convolutional Neural Net-
work (CNN) is a specialized type of Artificial Neural Network primar-
ily used for processing and analyzing visual data. It consists of multi-
ple layers, including convolutional, pooling, and fully connected lay-
ers. In convolutional layers, the network uses filters (kernels) to scan 
the input image and produce feature maps, detecting patterns such as 
edges and textures. Pooling layers then down sample these feature 
maps to reduce dimensionality. The final classification is performed 
by the fully connected layers at the end, using the extracted features 
from the image [13]. The structure of the best-performing CNN is 
given in the results section.  

Understanding The Output Metrics.  

This research was done to have maximum sensitivity. Sensitivity 
measures the proportion of true positive cases (brain tumors) correctly 
identified by the model. It is also known as the true positive rate or 
recall; specificity, however, measures the proportion of true negative 
cases (healthy cases) correctly identified, indicating how well the 
model avoids false positives.  



 

In brain tumor detection, missing a tumor (a false negative) could have 
severe consequences, so the models and neural networks used were 
compared based on having the best balance between high sensitivity 
and accuracy: the best model minimizes the risk of missing a tumor. 

The ML models' predictions were tested by calculating the accuracy 
and recall scores. The accuracy percentage measures the proportion of 
correct predictions, while the recall percentage measures the propor-
tion of true positives correctly identified by the model. 

RESULTS. 

The research presented in this study demonstrates the practical appli-
cation of machine learning (ML) and deep learning models for detect-
ing and classifying brain tumors using MRI images.  

ML Models. The accuracies of the machine learning models after 
training on the first dataset are given in Table 2. Random Forest 
Classifier achieved the highest overall accuracy of 89.5% on the first 
dataset, while K-Nearest Neighbors achieved the highest recall of 
91%. 

The accuracies of the machine learning models after training on the 
second dataset are given in Table 3. Random Forest again achieved 
the highest accuracy (86.9%) and also the highest recall of 87.5%. 

Table 2. Accuracies of the ML Models on the first dataset. 

Model Name Accuracy (%) Recall (%) 
Random Forest 89.5 87.5 
K-Nearest Neighbors 
(KNN) 

86.2 91 

Logistic Regression 82.3 87 
Gaussian Naïve-Bayes 
(GNB) 

71.5 73.2 

 
Table 3. Accuracies of the ML Models on the second dataset. 

Model Name Accuracy (%) Recall (%) 
Random Forest 86.9 87.5 
K-Nearest Neighbors 
(KNN) 

82.9 82.9 

Logistic Regression 79.2 79 
Gaussian Naïve-Bayes 
(GNB) 

65.8 68.1 

  
 
Figure 3 shows the confusion matrix of the Random Forest model after 
training on the second dataset. It is evident that the model was profi-
cient in distinguishing whether a scan contained a tumor but had more 
difficulty differentiating between gliomas and meningiomas. 

Neural Networks. The Convolutional Neural Network (CNN) per-
formed the best out of all the models tested on both datasets. A sample 
structure of the best-performing CNN on the first dataset is given in 
Table 4. 

This model had eight layers, with one convolutional and three dense 
layers. The total numbers of parameters were 5616386, totalling to 
21.42 MB. It achieved a maximum accuracy of 90.2%.  

Similarly, on the second dataset, a CNN (with a different structure) 
achieved a maximum accuracy of 88.9%. 

Multi-Layer Perceptron had a lower overall accuracy of 80%. 

DISCUSSION. 

Performance of the ML Models. The performance of different machine 
learning algorithms varied across both datasets. For the binary classi-
fication task (Dataset 1), the Random Forest classifier achieved the 
highest overall accuracy of 89.5% and a recall of 87.5%. This suggests  

 
Figure 3. Confusion Matrix of the Random Forest model, showing its per-
formance in classifying tumors of multiple types.  0 – No Tumor, 1 – Gli-
oma, 2 – Meningioma, 3 - Pituitary 

 
Table 4. Structure of the best-performing CNN on Dataset 1 

Layer (type) Output Shape Parameters 
conv2d (Conv2D) (None, 75, 75, 64)   320  
max_pooling2d (None, 37, 37, 64) 0 
flatten_1 (Flatten) (None, 87616) 0 
dense (Dense) (None, 64) 5607488 
dropout_1 (Dropout) (None, 64) 0 
dense_1 (Dense) (None, 128) 8320 
dropout_2 (Dropout) (None, 128) 0 
dense_5 (Dense)  (None, 2)  258 

 

that Random Forest was adept at identifying the presence of brain tu-
mors, making it a strong candidate for screening purposes. KNN, on 
the other hand, exhibited the highest recall score (91%), indicating that 
it was the most sensitive model in detecting tumors. Sensitivity is par-
ticularly critical in this context because missing a tumor (a false nega-
tive) can have severe consequences for patient outcomes. Logistic re-
gression also performed well, though it fell short of the accuracy and 
recall metrics of Random Forest and KNN. 

For the second dataset, which focused on classifying tumor types, Ran-
dom Forest once again emerged as the top-performing model with an 
accuracy of 86.9% and a recall of 87.5%. KNN was second with 82.9% 
accuracy and recall, while other models like Logistic Regression and 
Gaussian Naive-Bayes had inferior results. These results emphasize 
the capability of Random Forests in handling complex classification 
tasks, such as differentiating between different types of brain tumors. 

The Gaussian Naive-Bayes model performed the worst across both da-
tasets, with accuracy rates of 71.5% and 65.8% for binary and tumor 
type classification, respectively. Given the complex relationships be-
tween different features in MRI images, the assumption of independ-
ent features in Naive-Bayes likely contributed to its suboptimal per-
formance. 

Performance of the Neural Networks. The study's implementation of 
neural networks, specifically the Multi-Layer Perceptron (MLP) and 
Convolutional Neural Network (CNN), yielded varying results. The 
MLP, with a single hidden layer of size 200, could not achieve a high 
accuracy because it only had a single hidden layer. However, the CNN 
demonstrated the most potential due to its ability to extract and analyze 
spatial features from MRI images. It performed the best overall on 
both datasets, with an accuracy of 90.2% for binary-type classification 
and 88.9% for tumor-type classification. Also, the best-performing 
CNN architecture, consisting of multiple layers, such as convolutional, 



 

pooling, and dropout layers, achieved high accuracy with a relatively 
small size (~21.42 MB). This efficiency in both processing power and 
accuracy makes CNNs suitable for future brain tumor detection and 
classification developments. Similar findings were observed by Assel 
Ibraimova et al. [14] and Peiyi Gao et al. [15], who investigated the 
potential of using convolutional neural networks (CNNs) for diagnos-
ing brain diseases based on MRI scans. However, they did not com-
pare CNN with conventional machine learning methods and used data 
from a single center. 

Implications for Clinical Use. The findings of this research are signif-
icant for the use of AI in clinical radiology. By using machine learning 
algorithms such as Random Forest and deep learning techniques like 
CNNs, radiologists can significantly improve the speed and accuracy 
of brain tumor detection. Particularly in high-throughput settings 
where radiologists must review numerous scans, AI tools could help 
prioritize cases with potential tumors, allowing radiologists to focus 
their attention on the most critical scans. Zhihua Liu et al. [16] have 
provided a comprehensive survey of deep learning-based brain tumor 
segmentation techniques with similar findings to our research.  

Another critical benefit of AI is the potential to reduce false negatives 
(missed tumors). Models such as KNN, which demonstrated high re-
call, can be beneficial in flagging even small or atypical tumors that 
radiologists might otherwise miss in routine settings. Also, by inte-
grating tumor classification algorithms, AI systems could suggest 
whether a tumor is likely a pituitary tumor, glioma, or Meningioma.  

Limitations. Despite the promising results, several limitations exist in 
this study. First, Dataset 1 was relatively small, containing only 253 
images. While the models performed well in this limited context, their 
performance might only generalize to larger, more diverse datasets 
like Dataset 2, with further training and validation. 

Second, while the models focused on sensitivity, an additional focus 
on specificity would be beneficial to reduce the number of false posi-
tives. In a clinical context, false positives can lead to unnecessary fol-
low-up procedures, increased patient anxiety, and higher healthcare 
costs. 

Future Work. In future research, a larger dataset with images from dif-
ferent sources and varied patient demographics could be used to en-
hance the models' accuracy and relavance to real-world scenarios. Fu-
ture studies could improve the balance between sensitivity and speci-
ficity, ensuring that AI models not only detect tumors, but also accu-
rately differentiate between benign and malignant lesions. 

CONCLUSION. 

In conclusion, this study demonstrates the significant potential of ma-
chine learning and deep learning algorithms in improving brain tumor 
detection and classification from MRI scans. By training various mod-
els on two datasets—one for binary classification (tumor vs. no tumor) 
and another for multiclass classification of gliomas, meningiomas, and 
pituitary tumors—we found that Convolutional Neural Networks 
(CNNs) achieved the highest accuracies (90.2% and 88.9%, respec-
tively), demonstrating their potential in extracting spatial features. 
Among simple ML models, Random Forest had the highest accuracy, 
while K-Nearest Neighbors (KNN) showed the highest sensitivity at 
91%, which is beneficial for decreasing false negatives. These results 
show that combining models like CNNs and Random Forest into radi-
ological practice can enhance diagnostic accuracy and efficiency in 
radiology. Future research with larger datasets could further validate 
these models for real-world applications. 
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