
A Proposal for Optimal Emergency Vehicle Routing using Quan-
tum Annealing. 
Abhimanyu Deeraj   

CCIR Future Scholars Programme, Cambridge Center of International Research, Cambridge, United Kingdom, CB4 0GA. 

KEYWORDS. Quantum Processing, Quantum Annealing, Binary Quadratic Model, Dijkstra’s Algorithm, Routing Algorithm. 

BRIEF. Quantum Binary Quadratic Models can be used to optimize traffic routing under multiple real-time constraints. When used in conjunction 

with Dijkstra’s Algorithm, they could be a powerful means to efficiently route emergency vehicles, even in densely populated cities.

ABSTRACT. Algorithms used for routing emergency vehicles 

tend to be computationally intensive. With millions of road net-

works and even more traffic configurations, widely used routing 

algorithms, such as Dijkstra’s algorithm, rely on statistical approx-

imation to select best routes given the time and resource complex-

ity of the problem space [1]. The advent of quantum computing 

hardware allows us to produce superior algorithms to solve similar 

problems. For instance, prudent use of quantum parallelism can 

help explore a vast array of alternate routes while accounting for 

various routing constraints in real-time [2]. This paper introduces 

an iterative approach to implement a quantum routing algorithm 

for emergency vehicles. This algorithm seeks to improve route se-

lection by exploring all possible shortest paths across any two 

points in a geographical area while accounting for specific con-

straints along each route, in real-time, using a process called quan-

tum annealing [3]. The objective is to find the fastest route given 

start and end location in a geographical network, while simultane-

ously accounting for multiple constraints such as traffic incidents 

or road closures along the way. 

INTRODUCTION.  

Ambulances and other emergency vehicles provide a crucial service to 

our communities. Given their critical nature it is vital that they have a 

navigation system that constantly evaluates current traffic conditions 

and provides the quickest way to their destination. Every second mat-

ters, and it can mean the difference between life and death. 

Traditional routing algorithms, such as Dijkstra’s and A* algorithms 

used in Google Maps, can consistently find the shortest path between 

any two points in a geographical area [4]. However, scaling these al-

gorithms when there are many alternate routes remains a challenge. 

Modern computers run on digital architecture, using binary bits for in-

formation processing. These bits can only exist in two states, 1 or 0, 

and only allow a limited solution space to be explored in parallel at 

any given time. Therefore, they will not scale well when dealing with 

a large network of roads under a set of dynamic, real-world constraints 

that impact the optimal route. Quantum computing solves this issue by 

using subatomic particles, such as electrons, for information pro-

cessing [5]. These particles possess a unique property to exist in mul-

tiple states at once, what is often referred to as a superposition of en-

tangled states [6]. This allows the quantum computer to explore a vast 

set of possible solutions, in parallel, and choose the best solution, sim-

ultaneously accounting for a multitude of constraints. 

This paper highlights a proposal to improve emergency vehicle routing 

using a technique called quantum annealing. The term ‘annealing’ 

comes directly from metallurgy, where a metal is heated, and allowed 

to slowly settle into a stable configuration when cooling. Similarly, 

quantum annealing utilizes the superposition of quantum bits and their 

entanglement to explore a vast set of possible alternate routes simulta-

neously. Starting from a high energy state of superposition, when each 

quantum bit exists in multiple states at once, the annealer evaluates 

and compares the relative costs of each route against all others, grad-

ually allowing the bits to settle into a low energy state, which corre-

sponds to the optimal route. A mathematical model called a Binary 

Quadratic Model (BQM) is used to formulate the problem and submit 

it to the annealer. ‘BQM’ is an umbrella term for solving optimization 

problems with quadratic functions acting on binary variables by mini-

mizing costs involved [6]. A BQM is a concise way to specify the in-

teractions between various nodes (points of interest such as intersec-

tions, traffic signals, etc.) and edges (roads between nodes) of the net-

work. The annealer uses the BQM to determine the relative costs as-

sociated with choosing a specific route.  

The annealer runs on a quantum processing unit (QPU) which utilizes 

quantum bits (qubits). The qubits are initialized into a superposition of 

all possible states with equal probabilities to create a set of viable 

routes. This is the initial state of the system. Next, the annealer ana-

lyzes the relative costs of each route as compared to all other possible 

routes using a phenomenon called quantum tunneling, in which a con-

tinuous wavefunction is used to define all possible solutions [3]. The 

objective of the annealer is to find the global minima for this wave-

function. This corresponds to the lowest energy state within the sys-

tem. The global minima represent the best route given a set of unique 

constraints. 

MATERIALS AND METHODS.  

Accessing Map Data. 

The road network data of the city of Haslet, TX, accessed via Open-

StreetMap was used to test the algorithm. The road network consists 

of nodes that are intersections or points of significance within the city. 

The edges represent the roads connecting adjacent nodes. Each edge 

has an associated weight, corresponding to time taken to traverse the 

edge.  

Finding the Optimal Route. 

The objective of the algorithm is to find the fastest route between any 

two arbitrary nodes given a set of constraints represented as weights 

on the edges. For this experiment, a traffic incident is simulated by 

marking a set of nodes as unnavigable. These are tagged as ‘incident 

nodes.’ Consequently, the edges adjacent to these marked nodes are 

assigned higher weights.  

The algorithm finds alternate shortest routes that do not touch the 

marked nodes. Figure 1 depicts the unconstrained shortest path be-

tween the start and end nodes from the road network. The nodes 

marked with the red arrows represent two randomly selected incident 

nodes along the shortest path. Dijkstra’s Algorithm was used to estab-

lish the initial shortest path between the two selected nodes. Dijkstra’s 

Algorithm initially sets the weights of all nodes except the starting 

node to infinity. It then updates the edge weights of the nodes that can 

be traveled to directly from the starting node. Next, it compares the 

weights and picks the shortest route. After that, the node with the 

shortest route from the starting node is now set as the new starting 

node. Finally, Dijkstra’s Algorithm iterates through this process until 

the shortest route is achieved all the way to the target node [1]. 



 

A BQM is then employed to find the constrained shortest route. Dif-

ferent costs are assigned within the BQM to describe how “expensive” 

a certain route is. For example, routes along the incident nodes are 

assigned higher weights corresponding to the severity of the incident. 

This allows the algorithm to consider all possibilities of how the vehi-

cle can be routed, while minimizing travel time. 

BQMs have two parts, a linear and a quadratic term. The linear term 

represents the cost and benefits of each decision made, modeled by a 

binary variable multiplied by a constant. The quadratic term represents 

the interaction between binary variable pairs, modeling the effect of 

various routing decisions between any two nodes. The BQM’s objec-

tive function is a summation equation that sums various costs across 

all alternatives. Achieving optimization would minimize the result of 

this function. It can be generally represented as:  

𝐸(𝑥) = ∑ ℎ𝑖𝑥𝑖

𝑖

+ ∑ 𝐽𝑖𝑗𝑥𝑖𝑥𝑗  

𝑖<𝑗

(1) 

where  ℎ𝑖 represents the linear coefficients, 𝐽𝑖𝑗 represents the quadratic 

interactions between binary variables 𝑥𝑖   and 𝑥𝑗  . In the next step, pen-

alties are added. Penalties are large constants that are responsible for 

placing higher costs on infeasible solutions, forcing the algorithm to 

lean towards more feasible solutions. In other words, they bring the 

quantum model from a high to low energy state, the latter being the 

optimal solution [7]. 

The Advantage_system4.1 quantum annealer accessed through D-

Wave’s Leap Quantum Cloud Service was used to process the BQM 

during initial development. However, due to the difficulty of procuring 

sustained access to the annealer, a local simulator was used instead. 

This essentially simulates the annealing process and sends jobs to the 

user’s local computer, making it a much more accessible alternative. 

D-Wave’s Python-based Ocean SDK was used to create and submit 

the model to the annealer. 

Experiment.  

Given the OpenStreetMap data for Haslet, Texas, two arbitrary nodes 

were designated as start and end nodes. Dijkstra’s Algorithm was used 

to find the baseline shortest route between these nodes, as shown in 

Figure 1.  

A traffic incident was simulated by marking two nodes along this 

shortest path as unreachable. Next, a BQM was created using a data 

frame of all the nodes and travel times to their immediate neighbors 

along the shortest path. BQM constraints were established by adding 

large penalties to the incident nodes, to reduce the chances of the an-

nealer choosing them as part of the optimal solution. Ideally, in a real-

world scenario, the penalties would be proportional to the severity of 

the incident(s). Additional penalties involving start, end and neighbor-

ing nodes along the established optimal path were also formulated to 

account for single incoming and outgoing edges. In addition, penalties 

that enforced the connectivity of nodes along a path were also enforced 

to prevent an invalid final route map. To improve the validity of re-

sults, the BQM is run multiple times, each with a different combina-

tion of penalty constants that influence which constraints are priori-

tized over others. This helps the solver come up with a well-rounded 

solution that balances the importance of each constraint. Finally, a fre-

quency-based consensus algorithm is used to aggregate the results. 

The algorithm iteratively counts the number of times a node appears 

in the solution set and divides it by the total number of solution-sets to 

generate the percentage of solutions containing the node. The final so-

lution set consists of nodes that appear above a high threshold percent 

of solutions. The threshold can be adjusted depending on the density 

of the city map and the nature of the objective function. This allows 

the algorithm to either return a single consensus-based route or simul-

taneously explore multiple optimal routes. Figure 2 shows the revised 

optimal path between the two nodes. As expected, the new route care-

fully circumvents both incident nodes from the initial unconstrained 

shortest route.  

 

Figure 2. New shortest route between the start and end nodes, circumvent-
ing the simulated traffic incidents.  

Testing the limits of the algorithm. 

To truly test this algorithm’s limits, the above experiment was run on 

a variety of possible routes. Specifically, the algorithms processed 

routes with 16, 26, and 55 nodes between the selected start and end 

nodes. On each of these paths, the BQM was run for 27, 64, 125, 216, 

and 343 iterations. The results from these iterative tests are captured 

in Table 1 below and Figures S1-S3, with the aggregated results across 

all three routes summarized in Figure S4. In all cases, the BQM gen-

erated solutions satisfied all the constraints, as well as circumvented 

the incident nodes. 

 

Figure 1. Unconstrained shortest path between origin and destination 
nodes. 



 

RESULTS. 

A moderately sized subgraph with 55 nodes only took ~5.7 seconds to 

compute the optimal route vs. ~1.6 seconds for a small 16-node sub-

graph as seen in Table 1 below. This is ideal for local optimization 

across a small region. A notable observation was that across all path 

sizes, the quantum routing algorithm generated the valid solution 

within only 27 iterations, and the extra iterations proved to be redun-

dant. However, high density areas might require more iterations. 

 

DISCUSSION. 

The results of this experiment were as expected; the BQM supplied 

the constraints to the annealer, and the annealer consistently found the 

shortest route within 27 iterations. The results were validated by run-

ning Dijkstra’s Algorithm on the graph with the incident nodes de-

leted. The shortest route thus produced matched exactly with the BQM 

solution. Interestingly, for certain routes, the BQM generated multiple 

optimal paths, as their relative weights were equal. Future experiments 

will focus on obtaining and utilizing real-time traffic data as con-

straints to the model. These include modeling complex scenarios such 

as count of vehicles at traffic signals, average speed of vehicles along 

each edge and other such impacts due to traffic incidents. This allows 

the algorithm to dynamically pick the best alternative.  
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SUPPORTING INFORMATION.  

The Python code used to simulate the experiment can be found as Ex-

hibit S5 in the supporting information document along with data and 

visualization presented throughout this paper. 
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Table 1. BQM Performance Statistics  

# Nodes 

between 

start and 
end loca-

tions 

# Edges 

along all 
routes 

# Nodes in 
solution 

# of BQM 
iterations 

Time Elapsed 
in seconds 

16 20 13 27 1.5881 

16 20 13 64 3.5629 

16 20 13 125 6.8406 

16 20 13 216 11.7200 

16 20 13 343 18.4846 

26 29 25 27 2.7649 

26 29 25 64 6.1961 

26 29 25 125 12.0257 

26 29 25 216 20.5257 

26 29 25 343 32.4110 

55 57 54 27 5.6806 

55 57 55 64 12.9482 

55 57 55 125 24.9433 

55 57 55 216 43.0541 

55 57 55 343 67.8292 
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