
A Proposal for Optimal Emergency Vehicle Routing using Quan-
tum Annealing.
Abhimanyu Deeraj

CCIR Future Scholars Programme, Cambridge Center of International Research, Cambridge, United Kingdom, CB4 0GA.

KEYWORDS. Quantum Processing, Quantum Annealing, Binary Quadratic Model, Dijkstra’s Algorithm, Routing Algorithm.

BRIEF. Quantum Binary Quadratic Models can be used to optimize traffic routing under multiple real-time constraints. When used in conjunction

with Dijkstra’s Algorithm, they could be a powerful means to efficiently route emergency vehicles, even in densely populated cities.

ABSTRACT. Algorithms used for routing emergency vehicles

tend to be computationally intensive. With millions of road net-

works and even more traffic configurations, widely used routing

algorithms, such as Dijkstra’s algorithm, rely on statistical approx-

imation to select best routes given the time and resource complex-

ity of the problem space [1]. The advent of quantum computing

hardware allows us to produce superior algorithms to solve similar

problems. For instance, prudent use of quantum parallelism can

help explore a vast array of alternate routes while accounting for

various routing constraints in real-time [2]. This paper introduces

an iterative approach to implement a quantum routing algorithm

for emergency vehicles. This algorithm seeks to improve route se-

lection by exploring all possible shortest paths across any two

points in a geographical area while accounting for specific con-

straints along each route, in real-time, using a process called quan-

tum annealing [3]. The objective is to find the fastest route given

start and end location in a geographical network, while simultane-

ously accounting for multiple constraints such as traffic incidents

or road closures along the way.

INTRODUCTION.

Ambulances and other emergency vehicles provide a crucial service to

our communities. Given their critical nature it is vital that they have a

navigation system that constantly evaluates current traffic conditions

and provides the quickest way to their destination. Every second mat-

ters, and it can mean the difference between life and death.

Traditional routing algorithms, such as Dijkstra’s and A* algorithms

used in Google Maps, can consistently find the shortest path between

any two points in a geographical area [4]. However, scaling these al-

gorithms when there are many alternate routes remains a challenge.

Modern computers run on digital architecture, using binary bits for in-

formation processing. These bits can only exist in two states, 1 or 0,

and only allow a limited solution space to be explored in parallel at

any given time. Therefore, they will not scale well when dealing with

a large network of roads under a set of dynamic, real-world constraints

that impact the optimal route. Quantum computing solves this issue by

using subatomic particles, such as electrons, for information pro-

cessing [5]. These particles possess a unique property to exist in mul-

tiple states at once, what is often referred to as a superposition of en-

tangled states [6]. This allows the quantum computer to explore a vast

set of possible solutions, in parallel, and choose the best solution, sim-

ultaneously accounting for a multitude of constraints.

This paper highlights a proposal to improve emergency vehicle routing

using a technique called quantum annealing. The term ‘annealing’

comes directly from metallurgy, where a metal is heated, and allowed

to slowly settle into a stable configuration when cooling. Similarly,

quantum annealing utilizes the superposition of quantum bits and their

entanglement to explore a vast set of possible alternate routes simulta-

neously. Starting from a high energy state of superposition, when each

quantum bit exists in multiple states at once, the annealer evaluates

and compares the relative costs of each route against all others, grad-

ually allowing the bits to settle into a low energy state, which corre-

sponds to the optimal route. A mathematical model called a Binary

Quadratic Model (BQM) is used to formulate the problem and submit

it to the annealer. ‘BQM’ is an umbrella term for solving optimization

problems with quadratic functions acting on binary variables by mini-

mizing costs involved [6]. A BQM is a concise way to specify the in-

teractions between various nodes (points of interest such as intersec-

tions, traffic signals, etc.) and edges (roads between nodes) of the net-

work. The annealer uses the BQM to determine the relative costs as-

sociated with choosing a specific route.

The annealer runs on a quantum processing unit (QPU) which utilizes

quantum bits (qubits). The qubits are initialized into a superposition of

all possible states with equal probabilities to create a set of viable

routes. This is the initial state of the system. Next, the annealer ana-

lyzes the relative costs of each route as compared to all other possible

routes using a phenomenon called quantum tunneling, in which a con-

tinuous wavefunction is used to define all possible solutions [3]. The

objective of the annealer is to find the global minima for this wave-

function. This corresponds to the lowest energy state within the sys-

tem. The global minima represent the best route given a set of unique

constraints.

MATERIALS AND METHODS.

Accessing Map Data.

The road network data of the city of Haslet, TX, accessed via Open-

StreetMap was used to test the algorithm. The road network consists

of nodes that are intersections or points of significance within the city.

The edges represent the roads connecting adjacent nodes. Each edge

has an associated weight, corresponding to time taken to traverse the

edge.

Finding the Optimal Route.

The objective of the algorithm is to find the fastest route between any

two arbitrary nodes given a set of constraints represented as weights

on the edges. For this experiment, a traffic incident is simulated by

marking a set of nodes as unnavigable. These are tagged as ‘incident

nodes.’ Consequently, the edges adjacent to these marked nodes are

assigned higher weights.

The algorithm finds alternate shortest routes that do not touch the

marked nodes. Figure 1 depicts the unconstrained shortest path be-

tween the start and end nodes from the road network. The nodes

marked with the red arrows represent two randomly selected incident

nodes along the shortest path. Dijkstra’s Algorithm was used to estab-

lish the initial shortest path between the two selected nodes. Dijkstra’s

Algorithm initially sets the weights of all nodes except the starting

node to infinity. It then updates the edge weights of the nodes that can

be traveled to directly from the starting node. Next, it compares the

weights and picks the shortest route. After that, the node with the

shortest route from the starting node is now set as the new starting

node. Finally, Dijkstra’s Algorithm iterates through this process until

the shortest route is achieved all the way to the target node [1].

A BQM is then employed to find the constrained shortest route. Dif-

ferent costs are assigned within the BQM to describe how “expensive”

a certain route is. For example, routes along the incident nodes are

assigned higher weights corresponding to the severity of the incident.

This allows the algorithm to consider all possibilities of how the vehi-

cle can be routed, while minimizing travel time.

BQMs have two parts, a linear and a quadratic term. The linear term

represents the cost and benefits of each decision made, modeled by a

binary variable multiplied by a constant. The quadratic term represents

the interaction between binary variable pairs, modeling the effect of

various routing decisions between any two nodes. The BQM’s objec-

tive function is a summation equation that sums various costs across

all alternatives. Achieving optimization would minimize the result of

this function. It can be generally represented as:

𝐸(𝑥) = ∑ ℎ𝑖𝑥𝑖

𝑖

+ ∑ 𝐽𝑖𝑗𝑥𝑖𝑥𝑗

𝑖<𝑗

(1)

where ℎ𝑖 represents the linear coefficients, 𝐽𝑖𝑗 represents the quadratic

interactions between binary variables 𝑥𝑖 and 𝑥𝑗 . In the next step, pen-

alties are added. Penalties are large constants that are responsible for

placing higher costs on infeasible solutions, forcing the algorithm to

lean towards more feasible solutions. In other words, they bring the

quantum model from a high to low energy state, the latter being the

optimal solution [7].

The Advantage_system4.1 quantum annealer accessed through D-

Wave’s Leap Quantum Cloud Service was used to process the BQM

during initial development. However, due to the difficulty of procuring

sustained access to the annealer, a local simulator was used instead.

This essentially simulates the annealing process and sends jobs to the

user’s local computer, making it a much more accessible alternative.

D-Wave’s Python-based Ocean SDK was used to create and submit

the model to the annealer.

Experiment.

Given the OpenStreetMap data for Haslet, Texas, two arbitrary nodes

were designated as start and end nodes. Dijkstra’s Algorithm was used

to find the baseline shortest route between these nodes, as shown in

Figure 1.

A traffic incident was simulated by marking two nodes along this

shortest path as unreachable. Next, a BQM was created using a data

frame of all the nodes and travel times to their immediate neighbors

along the shortest path. BQM constraints were established by adding

large penalties to the incident nodes, to reduce the chances of the an-

nealer choosing them as part of the optimal solution. Ideally, in a real-

world scenario, the penalties would be proportional to the severity of

the incident(s). Additional penalties involving start, end and neighbor-

ing nodes along the established optimal path were also formulated to

account for single incoming and outgoing edges. In addition, penalties

that enforced the connectivity of nodes along a path were also enforced

to prevent an invalid final route map. To improve the validity of re-

sults, the BQM is run multiple times, each with a different combina-

tion of penalty constants that influence which constraints are priori-

tized over others. This helps the solver come up with a well-rounded

solution that balances the importance of each constraint. Finally, a fre-

quency-based consensus algorithm is used to aggregate the results.

The algorithm iteratively counts the number of times a node appears

in the solution set and divides it by the total number of solution-sets to

generate the percentage of solutions containing the node. The final so-

lution set consists of nodes that appear above a high threshold percent

of solutions. The threshold can be adjusted depending on the density

of the city map and the nature of the objective function. This allows

the algorithm to either return a single consensus-based route or simul-

taneously explore multiple optimal routes. Figure 2 shows the revised

optimal path between the two nodes. As expected, the new route care-

fully circumvents both incident nodes from the initial unconstrained

shortest route.

Figure 2. New shortest route between the start and end nodes, circumvent-
ing the simulated traffic incidents.

Testing the limits of the algorithm.

To truly test this algorithm’s limits, the above experiment was run on

a variety of possible routes. Specifically, the algorithms processed

routes with 16, 26, and 55 nodes between the selected start and end

nodes. On each of these paths, the BQM was run for 27, 64, 125, 216,

and 343 iterations. The results from these iterative tests are captured

in Table 1 below and Figures S1-S3, with the aggregated results across

all three routes summarized in Figure S4. In all cases, the BQM gen-

erated solutions satisfied all the constraints, as well as circumvented

the incident nodes.

Figure 1. Unconstrained shortest path between origin and destination
nodes.

RESULTS.

A moderately sized subgraph with 55 nodes only took ~5.7 seconds to

compute the optimal route vs. ~1.6 seconds for a small 16-node sub-

graph as seen in Table 1 below. This is ideal for local optimization

across a small region. A notable observation was that across all path

sizes, the quantum routing algorithm generated the valid solution

within only 27 iterations, and the extra iterations proved to be redun-

dant. However, high density areas might require more iterations.

DISCUSSION.

The results of this experiment were as expected; the BQM supplied

the constraints to the annealer, and the annealer consistently found the

shortest route within 27 iterations. The results were validated by run-

ning Dijkstra’s Algorithm on the graph with the incident nodes de-

leted. The shortest route thus produced matched exactly with the BQM

solution. Interestingly, for certain routes, the BQM generated multiple

optimal paths, as their relative weights were equal. Future experiments

will focus on obtaining and utilizing real-time traffic data as con-

straints to the model. These include modeling complex scenarios such

as count of vehicles at traffic signals, average speed of vehicles along

each edge and other such impacts due to traffic incidents. This allows

the algorithm to dynamically pick the best alternative.

ACKNOWLEDGMENTS.

I would like to thank Dr. Sergii Strelchuk, Royal Society University

Research Fellow, University of Cambridge, and Mr. Sean Harvey from

the University of Bath for guiding me through the research process as

part of CCIR’s Future Scholars Program.

SUPPORTING INFORMATION.

The Python code used to simulate the experiment can be found as Ex-

hibit S5 in the supporting information document along with data and

visualization presented throughout this paper.

REFERENCES.

1. P. Ray, Quantum Simulation of Dijkstra’s Algorithm. International

Journal of Advance Research in Computer Science and Management

Studies 2, 30-43 (2014).

2. F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, B.

Parney, Traffic Flow Optimization Using a Quantum Annealer. Front.

ICT 4, 29 (2017).

3. D-Wave Systems. “What is Quantum Annealing?”. Accessed July 19,

2024. https://docs.dwavesys.com/docs/latest/c_gs_2.html

4. R. Says, The Algorithms Behind The Working Of Google Maps, Co-

deChef (2021). Accessed January 9, 2025. https://blog.co-

dechef.com/2021/08/30/the-algorithms-behind-the-working-of-

google-maps-dijkstras-and-a-star-algorithm/.

5. International Business Machines. “What is Quantum Computing?”

Accessed June 15, 2024. https://www.ibm.com/think/topics/quantum-

computing

6. MIT Technology Review. “Explainer: What is a quantum computer?”.

Accessed June 15, 2024. https://www.technolo-

gyreview.com/2019/01/29/66141/what-is-quantum-computing/

7. D-Wave Systems. 2022. “Problem Formulation Guide”. Accessed Au-

gust 17. 2024. https://www.dwavesys.com/media/bu0lh5ee/problem-

formulation-guide-2022-01-10.pdf.

8. P. Toth, D. Vigo, The Vehicle Routing Problem (Society for Industrial

and Applied Mathematics, 2002).

9. M. Sahil, S. Jain, J. Hamdard, QUANTUM PATHFINDERS:

NAVIGATE THE SHORTEST ROUTE. International Journal of En-

gineering Applied Sciences and Technology 7, 116-121 (2022)

10. K. Khadiev, L.I. Safina, Quantum Algorithm for Shortest Path Search

in Directed Acyclic Graph. Moscow University Computational Math-

ematics and Cybernetics 43, 47-51 (2018).

11. M.R.S Aghaei, Z.A. Zukarnain, A. Mamat, H. Zainuddin, A Hybrid

Algorithm for Finding Shortest Path In Network Routing. Journal of

Theoretical and Applied Information Technology 5, 360-365 (2009)

Abhimanyu Deeraj is a student

at V.R. Eaton High School in

Haslet, Texas. He participated

in a research internship

through the CCIR Future

Scholars Programme.

Table 1. BQM Performance Statistics

Nodes

between

start and
end loca-

tions

Edges

along all
routes

Nodes in
solution

of BQM
iterations

Time Elapsed
in seconds

16 20 13 27 1.5881

16 20 13 64 3.5629

16 20 13 125 6.8406

16 20 13 216 11.7200

16 20 13 343 18.4846

26 29 25 27 2.7649

26 29 25 64 6.1961

26 29 25 125 12.0257

26 29 25 216 20.5257

26 29 25 343 32.4110

55 57 54 27 5.6806

55 57 55 64 12.9482

55 57 55 125 24.9433

55 57 55 216 43.0541

55 57 55 343 67.8292

https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://blog.codechef.com/2021/08/30/the-algorithms-behind-the-working-of-google-maps-dijkstras-and-a-star-algorithm/
https://blog.codechef.com/2021/08/30/the-algorithms-behind-the-working-of-google-maps-dijkstras-and-a-star-algorithm/
https://blog.codechef.com/2021/08/30/the-algorithms-behind-the-working-of-google-maps-dijkstras-and-a-star-algorithm/
https://www.ibm.com/think/topics/quantum-computing
https://www.ibm.com/think/topics/quantum-computing
https://www.technologyreview.com/2019/01/29/66141/what-is-quantum-computing/
https://www.technologyreview.com/2019/01/29/66141/what-is-quantum-computing/
https://www.dwavesys.com/media/bu0lh5ee/problem-formulation-guide-2022-01-10.pdf
https://www.dwavesys.com/media/bu0lh5ee/problem-formulation-guide-2022-01-10.pdf

