
Cognitive, Genetic, and Lifestyle Synergy: A Machine Learning 
Approach to Alzheimer's Diagnosis 
Darsh Choudhary1 and Nirupma Singh2  

1Grade 9, Oberoi International School, Mumbai, Maharashtra, 400063. 
2Department of Biological Sciences and Engineering, Netaji Subhas University of Technology (Formerly NSIT), Dwarka, Delhi, India. 

KEYWORDS. Alzheimer’s Disease, Diagnosis, Machine Learning, Cognitive Scores, Gene Expression 

BRIEF. This study employs a multidisciplinary approach, integrating machine learning techniques, gene expression analysis, clinical assessments, 

and lifestyle data to uncover potential biomarkers and therapeutic targets for Alzheimer's disease

ABSTRACT. Alzheimer's disease (AD), a major public health 

concern characterized by memory loss and cognitive decline, 

demands innovative strategies for both diagnosis and treatment. This 

study leverages machine learning (ML) techniques to explore the 

gene expression patterns in AD, while analyzing the predictive 

ability of lifestyle, genetic and clinical data. Using ML framework, 

patient lifestyle information, clinical data and gene expression 

profiles data were examined. The findings demonstrate the 

effectiveness of K-means clustering in uncovering distinct gene 

clusters based on expression patterns to find the one associated with 

AD, presenting potential biomarkers for diagnosis and HSP as target 

for therapeutic intervention. The study highlights a significant role 

of lifestyle factors in modulating AD risk. Cognitive assessments, 

such as the Mini-Mental State Examination (MMSE) and 

handwriting analysis, further supports the validity of these measures 

as diagnostic tools. The results underscore the complex interplay 

between genetic, behavioral, and cognitive factors in influencing the 

progression and manifestation of AD and offer a three-step 

validation for diagnosing AD. By integrating data from multiple 

sources, this research enhances our understanding of the disease and 

offers potential applications for personalized therapies and improved 

diagnostic accuracy bridging ML applications with biological 

research through a multidisciplinary approach. 

INTRODUCTION.  

AD is the most prevalent form of dementia, a devastating 

neurodegenerative disorder (ND) that affects millions of people 

worldwide. It typically begins slowly, affecting memory and eventually 

causing difficulties with comprehending language, mood swings and 

disorientation 1. While the precise cause of AD remains elusive, genetic 

mutations, environmental influences, and lifestyle factors are all 

considered contributors, with amyloid-beta plaques and tau protein 

tangles playing a significant role in disease pathology. Current 

diagnostic methods are based on cognitive testing and medical imaging. 

No cures for the disease currently exist, hence managing symptoms and 

maintaining quality of life are topmost priorities for reducing the damage 
2. In the past few years, the number of cases of AD have increased 

rapidly, with approximately 50 million global patients. Projections 

indicate that the number of new AD cases could possibly double every 

five years, reaching about 152 million cases by 2050, displaying the 

immense societal impact 3.  

Past research studies have shown an important role of certain 

biomolecules in AD initiation and progression. Heat Shock Proteins 

(HSPs), essential for cellular health, have been found to play a pivotal 

role in NDs like AD which makes them a critical point to be studied in 

AD patients. One of their primary functions is acting as molecular 

chaperones, assisting in protein folding and preventing the harmful 

aggregation of proteins, such as the misfolded amyloid-beta peptides 

central to AD pathology 4. Hsp70 amongst other HSPs plays a significant 

role in AD by influencing the Amyloid-beta (Aβ) peptides and mediating 

the transcriptional activation of genes involved in AD 5. 

Studies regarding both AD and its biomarkers using ML have been 

gaining popularity, as ML proves to be a way to efficiently interpret and 

analyze vast, complex biological data. For instance, AD and ML have 

been integrating on a study by Jinwei Li and her colleagues, where they 

identified diagnostic genes for AD which could act as biomarkers in 

identifying the disease, upon which a subarray of genes were selected 

which had the highest accuracy in identifying AD. Following this, a risk 

score of a patient being infected by AD was calculated using the levels 

of the selected diagnostic genes 6. This shows the scope of ML in 

medical fields and displays how it can be used in various studies 

regarding AD and its biomarkers.  

Although numerous studies have explored the roles of several 

biomarkers in NDs, and others have employed machine learning in AD 

biomarker discovery, no research to date has directly integrated ML to 

provide the multi-level validated diagnosis for AD. This gap highlights 

the need for novel approaches that combine these fields to better 

understand the AD diagnosis. Thus, in this study, the use of ML by 

combining lifestyle factors in modulating AD risk, cognitive 

assessments, such as MMSE and handwriting analysis, has been made 

to support the validity of these measures as diagnostic tools. This will 

allow analyzing complex biological data in an efficient manner to 

provide more accurate results and possibly provide methods to improve 

AD diagnosis. 

MATERIALS AND METHODS.  

Data Collection and preprocessing. 

The data used for the study was primarily from Kaggle. Dataset 1 

(alzheimers_disease_data)7 contained 32 features regarding lifestyle 

choices of 2149 patients, and a final target column with AD and non-

AD. Dataset 2 (Alzheimer’s Clinical Data’) 8 had clinical information 

from 1229 patients, with 5 features and a target variable column with 

‘No Dementia’, ‘Uncertain Dementia’ and ‘AD Dementia’ individuals. 

Dataset 3 (Handwriting Data) 9 consisted of data from 174 patients, with 

more than 252 handwriting related features such as pressure applied on 

paper, air time, etc. for AD and non-AD individuals. Major changes in 

handwriting style can be a sign of dementia related diseases. This is 

because writing involves the brain and motor control, which can easily 

be affected even during the early-stages of dementia. Dataset was an 

unlabeled dataset of Alzheimer’s Gene Expression Profiles 10 used in 

order to retrieve gene related data of the disease that had the levels of 

different genes in four patient samples, two with AD and other two 

samples with Parkinson’s Disease (PD). The specifications of each 

dataset are given in Table 1. After data collection preprocessing was 

done where Quadratic Interpolation was done to replace the missing data 

points in Dataset 2. Standard scaling was used for feature scaling of the 

datasets. 

Feature Engineering and Data Augmentation. 

The feature engineering step helped in boosting the accuracy for each of 

the models used on the datasets. The feature engineering consisted of 

using various feature selection methods on Datasets 1 and 3. Principal 

Component Analysis (PCA), Least Absolute Shrinkage and Selection 



 

Operator (LASSO) Regularization, and Recursive Feature Elimination 

(RFE) were used as the selection methods. Dataset 1 showed the best 

results with RFE, and LASSO Regularization brought out the best results 

for Dataset 3. Data Augmentation using Synthetic Minority 

Oversampling Technique (SMOTE) was used for Dataset 2 because this 

dataset was highly imbalanced. 

Model Training and Development. 

The Python programming language version 3.11.4 was used to run the 

models. On datasets 1, 2 and 3 supervised classification models were 

trained, which included Extreme Gradient Boosting (XGBoost), 

Random Forest, Support Vector Machine (SVM), Logistic Regression, 

K-Nearest Neighbours (KNN), Naive Bayes and Adaptive Boosting 

(AdaBoost) using scikit-learn library. For all supervised models, train-

test split from sklearn was used to split the dataset into 70 % training and 

30%  testing data. Cross Validation was also used in all of the supervised 

learning models to avoid bias and overfitting. Hyperparameter tuning 

was applied using sklearn’s GridSearchCV to find the best set of 

hyperparameters and to optimize the performance of the model. Deep 

Neural Networks (DNN) were made on Dataset 1 and 2 using 

TensorFlow framework. 2 Hidden Layers had been used for each dataset, 

and the activation function used for this was Rectified Linear Unit 

(ReLU). The first hidden layer had 64 neurons, the second one had 32. 

For Dataset 1 DNN the Sigmoid  activation function was used, as the 

output consisted of two layers. Binary Cross Entropy was used as the 

Loss Function for this dataset. For Dataset 2 SoftMax activation function 

was used and was run with Sparse Categorical Cross Entropy Loss 

function, as it was a multiclass classification. Unsupervised learning 

algorithms were applied on Dataset 4, as this dataset had no target 

variables. Two unsupervised clustering models were run, Density Based 

Spatial Clustering for Applications with Noise (DBSCAN) and K-

Means Clustering using sklearn with making 3 clusters, to find the gene 

clusters in the patients with AD and PD and with No Dementia. 

Model Evaluation. 

Every model was evaluated on multiple evaluation metrics to ensure the 

robustness of the models and select the best model for each dataset. For 

the supervised learning models on Datasets 1, 2 and 3, the overall 

Accuracy, Precision, Recall, F1 Score, Area Under Curve (AUC) score 

and Receiver Operating Characteristics (ROC) curve were all used to 

evaluate the models. For the dataset 4 different evaluation scores 

Silhouette Score, Davies-Bouldin Index and Calinski Harabasz Index 

were used. These indices help in giving the relation of objects with their 

own cluster as well as measure the ratio of the sum between cluster 

dispersion and of within-cluster dispersion. 

RESULTS. 

This section presents the results obtained from the supervised and 

unsupervised machine learning models as well as deep learning 

algorithms applied to different datasets. Dataset 1 focused on identifying 

AD in different patients based on their lifestyle choices and 

corresponding scores. RFE gave the best results on the dataset by 

choosing 18 best features out of 32. From 7 ML models that were trained, 

XGBoost model gave the best results, with an overall accuracy of 

95.35%, with the precision, recall, F1 score and AUC-ROC being 

95.34%, 95.35%, 95.33% and 95.47% respectively. The ROC-AUC 

curve of the models trained on Dataset 1 is shown in Fig 1. The ROC-

AUC curve is a crucial measure of the classification performance of 

machine learning models, illustrating the trade-off between sensitivity 

(recall) and specificity across different thresholds. A higher AUC-ROC 

score signifies a model's ability to distinguish between AD and non-AD 

patients effectively. Among the models tested on Dataset 1, XGBoost 

performed the best, achieving an AUC-ROC of 95.47%, indicating 

strong discriminatory power. This suggests that XGBoost is highly 

reliable for classifying individuals based on their lifestyle-related risk 

factors, making it a potential candidate for early screening and risk 

assessment of AD. Table 2 lists down the results of each evaluation 

measure for every ML model. The DNN model trained on this dataset 

gave an overall accuracy of 78.91%, with the precision, recall, F1 score 

and AUC-ROC being 77.90%, 76.54%, 77.07% and 85.17% 

respectively.  

 

Figure 1. ROC-AUC Curve of ML models trained on Dataset 1 related to 
Alzheimer’s Disease profile data. The green line shows the area under the 

curve for the XGBoost model that performed best on the dataset. Class 0 

indicates the accuracy of predicting people who are not AD patients, 
whereas Class 1 indicates the accuracy of predicting AD patients. 

Both the datasets, Dataset 2 and 3 were related to cognitive behavior. 

Dataset 2 focused on classifying between ‘No Dementia’, ‘Uncertain 

Dementia’ and ‘AD Dementia’ individuals with the help of 5 features 

which included a Mini-Mental State Examination (MMSE) score, as 

well as other important medical data. The correlation between different 

features of this dataset 2 is shown in Fig S1. Both the datasets directly 

correlate with the cognitive scores of a patient. For dataset 3, from 

feature selection, the LASSO method gave the best results with 94 

selected features out of 252. From 7 different ML models, the best results 

on Dataset 2 was obtained from using Random Forest, with an overall 

accuracy of 90.94%, and the precision, recall, F1 score and AUC-ROC 

being 90.99%, 90.94%, 90.93% and 97.09% respectively. Evaluation 

metrics of all the models trained on Dataset 2 and 3 are shown in Table 

S1 and Table S2, respectively. 

The ROC-AUC curve of the models trained on Dataset 2 is shown in Fig 

2. For Dataset 3, the best result was achieved by XGBoost, with an 

overall accuracy of 86.79%, and the precision, recall, F1 score and AUC-

ROC being 89.51%, 86.79%, 86.52% and 91.45% respectively. The 

ROC-AUC curve of the models trained on Dataset 1 is shown in Fig 4. 

The DNN model run on Dataset 2 gave an overall accuracy of 85.69%, 

with the precision, recall, F1 score and AUC-ROC being 87.02%, 

85.73%, 85.53% and 95.30% respectively.

Table 1. Information on all the datasets used for the study. 

Name Dataset  Data 

Samples 
No. of 

Features 
No. of 

Target 

Variables 

Alzheimers_disease_data 1 2149 32 2 

Alzheimer’s Clinical 

Data 
2 1229 5 3 

Handwriting Data 3 174 252 2 

Alzheimer’s Gene 

Expression Profiles 
4 45118 8 0 

     



 

Table 2. Evaluation metrics of each ML Model on Dataset 1 

Model’s Name Accuracy Precision Recall F1 Score AUC-ROC Score 
KNN 82.95% 82.74% 82.95% 82.75% 88.16% 
SVM 87.75% 87.66% 87.75% 87.67% 92.66% 
Logistic Regression 84.85% 84.58% 84.65% 84.30% 89.81% 
Naive Bayes 79.84% 79.97% 79.94% 79.90% 87.33% 
Random Forest 95.04% 95.03% 95.04% 95.02% 94.38% 
XGBoost 95.35% 95.34% 95.35% 95.33% 95.47% 

AdaBoost 93.33% 93.40% 93.33% 93.36% 94.10% 

 

Figure 2. ROC-AUC Curve of ML models trained on Dataset 2 related to 

MMSE cognitive scores. A macro-average approach was used to calculate 

the average performance across all classes. The green line shows the area 
under the curve for the Random Forest model that performed best on the 

dataset. Class 0 indicates the accuracy of predicting people who are not AD 

patients, whereas Class 1 indicates the accuracy of predicting AD patients. 
Class 2 indicates the accuracy of predicting patients with PD. 

 

Dataset 4 focused on identifying the cluster of genes which are 

differentially expressed and specifically associated with the 

neurodegenerative disorders due to AD. Standard scaling was chosen 

before running the unsupervised models. A total of 2 clustering models 

were used on the dataset, K-means Clustering and Density-Based Spatial 

Clustering of Application with Noise (DBSCAN). The best results were 

achieved with the K-Means clustering algorithm. The three different 

clusters made by the algorithm are shown in Fig 3. Table 3 shows the 

results of the clustering models, for several evaluation metrics such as 

Silhouette Score, Davies-Bouldin Score, and Calinski-Harabasz Score; 

some of the evaluation methods which are commonly used in the case of 

clustering models. The clustering analysis identified distinct gene 

expression patterns in AD, with K-Means achieving the best results 

(Silhouette Score: 0.716, Davies-Bouldin Score: 0.5825, Calinski-

Harabasz Score: 38484.933), indicating well-separated and biologically 

meaningful clusters. Among them, Cluster 3 emerged as AD-specific, 

containing HSP90, a key gene involved in neuroprotection. Pathway 

analysis further confirmed its relevance, highlighting “HSP90 chaperone 

cycle” and “Regulation of HSF1-mediated heat shock response” as 

significant pathways in AD. While DBSCAN had a slightly higher 

Silhouette Score (0.750), its lower Calinski-Harabasz Score (1343.7857) 

suggests that K-Means provided more robust biological insights, 

emphasizing the importance of selecting the right clustering method in 

bioinformatics-driven disease research. 

DISCUSSION. 

This study applied ML and DL techniques to analyze lifestyle choices, 

cognitive scores, and differentially expressed genes in patients with AD, 

with the primary goal of identifying critical biomarkers and features. The 

XGBoost model demonstrated superior performance in analyzing 

lifestyle choices, achieving an accuracy of 95.35%, highlighting its 

ability to identify key indicators such as dietary habits, sleep quality, and 

stress management, corroborating their relevance to AD. Similarly, 

Random Forest outperformed other models in assessing cognitive scores 

based on clinical data, with an accuracy of 90.94%, emphasizing the 

strong correlation between cognitive decline, as measured by MMSE, 

and AD pathology. Handwriting analysis further validated this approach, 

with XGBoost achieving 86.79% accuracy, reinforcing its role in 

cognitive assessment and early AD diagnosis. 

In gene expression analysis, K-means clustering emerged as the best-

performing model, with a silhouette score of 0.716, revealing critical 

associations between HSP90, HSF1, and AD pathology. The integration 

of multiple preprocessing techniques, including feature selection, data 

scaling, and cross-validation, ensured balanced datasets and improved 

model accuracy. Using multiple ML models for trials enhanced the 

reliability of results by selecting the best-performing models. These 

findings suggest that integrating lifestyle, cognitive, and genetic data 

offers a robust three-layer diagnostic framework for AD. Thus, this study 

underscores the potential of ML and DL techniques in identifying key 

biomarkers, offering valuable insights for improving AD diagnosis and 

paving the way for personalized therapeutic interventions. 

Despite the promising results, this study has some limitations. Firstly, 

the datasets used were sourced from public repositories, which may 

introduce biases due to limited demographic diversity and potential 

 

Figure 3. Clusters formed by K-Means Clustering algorithm on Gene 
Expression Data. The yellow, purple and green small circles represent three 
different clusters made by the model. 

 

Table 3. Evaluation scores of Clustering Models on Dataset 4 

Model Silhouette 

Score 

Davies-

Bouldin Score 

Calinski-

Harabasz 

Score 

K-Means 0.716 0.5825 38484.933 

DBSCAN 0.750 1.0919 1343.7857 

    



 

inconsistencies in data collection methodologies. Secondly, while ML 

models achieved high accuracy, the generalizability of these findings in 

real-world clinical settings remains to be validated on larger and more 

diverse populations. Another limitation is the lack of longitudinal data, 

which could provide better insights into disease progression over time. 

Finally, while ML-based clustering identifies potential genetic 

biomarkers, further experimental validation is needed to confirm their 

biological significance in AD pathology. 

In conclusion, the research highlights the complex interplay of genetic, 

behavioral, and cognitive factors in AD progression and opens the door 

to biomarker based personalized treatment strategies and improved 

diagnostic tools for AD, contributing to better patient outcomes. It also 

highlights the potential of machine learning and deep learning 

techniques to revolutionize personalized medicine by providing more 

accurate and actionable insights into complex diseases such as AD. By 

implementing supervised ML models on multiple datasets and by 

achieving high accuracies, the  study provides a three-level validation of 

AD diagnosis. The findings pave the way for further exploration into 

integrating AI-driven methods into clinical workflows, conducting 

prospective validation in hospital settings, and exploring multi-omics 

approaches for a more comprehensive understanding of AD 

pathogenesis. integrating AI-driven methods in clinical settings. 

SUPPORTING INFORMATION. 

Supporting Information includes correlation matrix for selected features, 

and evaluation metrics regarding accuracies for each ML model on a 

dataset.  
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