
Assessing the viability of qiskit and IBM Quantum to solve QUBO
problems with publicly available quantum computers
Kyan K Oakley

Northfield Mount Hermon, Gill, MA, 01354

KEYWORDS. Quantum computing, qiskit, linear algebra, QUBO, Ising model

BRIEF. This paper attempts to solve the aircraft loading optimization problem using publicly accessible quantum computers.

ABSTRACT. This paper explores a specific optimization problem

called the aircraft loading optimization problem. It is an optimization

problem that can benefit from a quantum speedup by a quantum

computer. This problem can benefit from a quantum speedup

because it is part of an optimization class called QUBO problems.

These problems can be expressed as a matrix-vector product.

Quantum computers can convert this matrix into an Ising

Hamiltonian and then perform quantum annealing to solve it.

Unfortunately, these quantum computers are expensive and

inaccessible, so this paper attempts to solve the aircraft loading

optimization problem on accessible quantum computers or quantum

simulators, using quantum-classical hybrid solvers. We used qiskit

optimization to set up the problem and then tried multiple ways of

solving it. The first was to simulate a quantum computer on our local

hardware with qiskit, which inevitably failed because the problem

was too large for the qiskit simulators. The second attempt was to

use qiskit runtimes with IBM Quantum. This also failed because the

packages were not compatible with qiskit optimization, making

medium-size QUBO problems unsolvable by open-source quantum

computing.

INTRODUCTION.

In aviation, one of the known areas that can benefit from a quantum

speedup is optimization. Quantum computers are particularly good at

specific optimization problems because the superposition of qubits and

their ability to perform quantum tunneling can be used to find the

minimum state of the problem. One practical optimization problem in

aviation is the aircraft loading optimization problem. The problem states:

if you have ‘N’ objects and ‘M’ spaces in an aircraft, what is the optimal

way to load the objects so the aircraft can still fly at maximal capacity?

This problem falls under a classification of problems called Quadratic

Unconstrained Binary Optimization (QUBO) problems. Due to their

setup, QUBO problems lend themselves very well to solutions via

quantum computers. This is because QUBO problems belong to the

complexity class ‘NP’, meaning that the time taken to solve these

problems can be expressed as a polynomial function of the number of

variables in the problem if and only if solved by a nondeterministic

Turing machine, which is a quantum computer. In other words, NP

problems require quantum computers to solve. Typically, these quantum

computers are expensive and inaccessible, so this paper aims to answer

whether publicly available quantum computers, such as those at qiskit or

IBM, can solve a twenty-five variable aircraft loading QUBO

optimization problem. For low-variable problems, classical computer

annealing may be powerful enough to find the optimal solution. As the

problem size increases, classical annealing cannot handle the size of the

problems, making quantum annealing and quantum-classical hybrid

algorithms become appealing when the problems become bigger.

A QUBO problem is a binary optimization problem. The problem is set

up by defining some function of binary variables (variables that can only

be 0 or 1) and optimizing this function. QUBO problems must be

quadratic or linear and subject to no constraints. They appear in the form:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑦 = 𝑋⃗𝑇𝑄𝑋⃗ (1)

where ‘X’ is a vector containing all binary variables, and Q is a matrix

representing the coefficients of the linear and quadratic terms in the

equation [1]. Most QUBO problems are first expressed as a typical

function of variables, then they are rewritten into the vector form. The

linear terms in the function can be mapped to the diagonal of the matrix,

while the off-diagonal values refer to the quadratic terms. These QUBO

matrices can come in two forms: upper right triangular and symmetrical.

If the matrix had an upper right triangular form, the quadratic binary

variable 5 · X(1) · X(2)would have a value of 5 in column 1 and row 2,

which corresponds to (1, 2); if the matrix had a symmetrical form,

though, the matrix would have an integer of 2.5 in (1, 2) and (2, 1) [1].

This works because when multiplying out the matrix-vector products,

they are equivalent statements.

Frequently, QUBO problems are not initially expressed in vector form,

but rather as a typical equation of binary variables. Then, we can factor

out a vector of binary variables and its transpose to get the matrix ‘Q’.

An example of what a simple QUBO problem might look like is below.

 𝑦 = 2𝑋(1) + 4𝑋(2) − 6𝑋(1)𝑋(2) (2)

Where X(n) are the binary variables. To convert this to a matrix, we can

leverage the property that these are binary variables, and they can only

take on the values 0 and 1, meaning that 𝑋(𝑛) = 𝑋(𝑛)2. Once we do

this, we can factor out the variable vector and its transpose. This gives

us the equation:

y = [𝑋(1) 𝑋(2)] [

2 −3
−3 4

] [
𝑋(1)
𝑋(2)

] (3)

Multiplying out the matrix-vector product will yield equation 2, meaning

they are equivalent statements. This matrix contains the linear terms of

equation 2 on the diagonal with the quadratic terms occupying the off-

diagonals.

Although QUBO problems must be unconstrained, it is frequently useful

to encode a constraint into the problem. Computer scientists have gotten

around the unconstrained nature of QUBO problems by converting a

constraint into a quadratic penalty function. The process is like Lagrange

multipliers from Lagrangian mechanics in that you scale the constraint

and subtract it from the main equation. The key difference between

Lagrange multipliers and QUBO penalty functions is that the QUBO

constraints must be changed into a new form by introducing more

variables before they can be scaled and subtracted. Initially, QUBO

constraints look something like this:

 𝑋(3) − 𝑋(2) > 0 (4)

To convert this to a QUBO solvable format, it must be converted to a

penalty function [1]. The process of making a penalty function is not the

purpose of this paper since qiskit has a function that converts constraints

into penalty functions, so we will not get into it. By subtracting the

penalty function from the original equation before converting to matrix-

vector form, the information of the constraint can be encoded into the

problem by causing the equation to reach a higher value if the constraint

is not met, meaning the minimum solution will not be found if the

constraint is not met [2]. The conversion from equation form to vector

form should only be done after subtracting the penalties because if not,

the constraints will not be encoded into the problem.

QUBO problems have a large capacity for quantum speedup because the

matrix can be expressed as an Ising Hamiltonian, which is a matrix

containing the spins of many different electrons to code for information.

Quantum computers can then optimize problems by using these Ising

Hamiltonians and quantum annealing. The most common optimization

tool is a quantum annealer, a specific quantum computer that can only

solve optimization problems. These are typically 15 million dollars, but

they can solve problems with 1 million variables and over 100,000

constraints. Quantum annealers use superposition probabilities to tunnel

through the potential energy peaks to find a global minimum. Since these

are very expensive, the alternative is a Quantum Approximate

Optimization Algorithm (QAOA), a hybrid quantum-classical algorithm

approximating the optimal solution using a less powerful quantum

computer and a classical computer that communicate together to find the

solution to the Ising matrix. This is the ideal optimizer for a medium-

sized QUBO problem because classical annealers are not equipped for

their size, but quantum annealers are too expensive for their benefit to

the medium problem size. Quantum-classical hybrid algorithms are also

accessible: they can be simulated on a local system or exported to a

quantum computer to run externally, meaning anyone with local

hardware can use them.

MATERIALS AND METHODS.

The aircraft loading optimization problem has a simple minimization

function because it is linear; the variables are scaled values of X(a, b)

where ‘a’ and ‘b’ are integers [2]. If the minimized value of this variable

is ‘1’, object ‘a’ should be loaded into space ‘b’; however, if the

minimized value of this variable is 0, it means that object ‘a’ will not be

put into space ‘b’ [2]. Objects can have varying masses and take up

different amounts of space, with some taking a half-space, others taking

a whole space, and others taking 2 spaces. The overall function to

minimize becomes:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑦 = − ∑ ∑ 𝑡𝑎𝑚𝑎𝑋(𝑎, 𝑏)

𝑚

𝑏 = 1

𝑛

𝑎 = 1

 (5)

Where “a” is the object number, 𝑚𝑎 is the mass of object a, “b” is the

occupying space number, and:

{
𝑡𝑎 = 1, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 1 𝑜𝑟

1

2
 𝑎 𝑠𝑝𝑎𝑐𝑒

𝑡𝑎 =
1

2
, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 2 𝑠𝑝𝑎𝑐𝑒𝑠

(6)

Constraints will be utilized to ensure the structural integrity, the center

of mass position, and the plane's lift collectively do not stop the plane

from functioning. Constraints will also be used to stop physical

geometry from being broken, such as 2 objects in 1 space when they each

take up 1 whole space.

The no-overlaps condition ensures that there are no overlaps within the

spaces. This means that there won’t be multiple boxes in the same space

unless they both have a size of half a space. The constraint follows:

∑ 𝑑𝑎𝑋(𝑎, 𝑏)

𝑛

𝑎 = 1

≤ 1

{

𝑑𝑎 = 1, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 𝑢𝑝 1 𝑜𝑟 2 𝑠𝑝𝑎𝑐𝑒𝑠

𝑑𝑎 =
1

2
, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑡𝑎𝑘𝑒𝑠 𝑢𝑝

1

2
 𝑜𝑓 𝑎 𝑠𝑝𝑎𝑐𝑒

(7)

Next, we constrain our equation so that each object does not occupy

multiple spaces:

𝑡𝑎 ∑ 𝑋(𝑎, 𝑏) ≤ 1

𝑚

𝑏 = 1

{
𝑡𝑎 = 1, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 1 𝑜𝑟

1

2
 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑡𝑎 =
1

2
, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 2 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

(8)

The final geometric constraint that we must add ensures that objects that

should occupy 2 spaces actually occupies 2 spaces, rather than just 1.

The constraint equation follows:

∑ 𝑋(𝑎, 𝑏)𝑋(𝑎, 𝑏 + 1)

𝑚−1

𝑏= 1

= 1
(9)

Rather than converting the constraints to penalty functions manually,

qiskit can be used to convert them faster and more conveniently.

Additionally, qiskit has a built-in function where it converts QUBO

equations into Ising matrices, so there is no need to go into how that is

done in this paper.

Once qiskit has converted the problem into an Ising matrix, all that

remains is the solution. Quantum computers can compute these quickly

and efficiently. Out of all quantum computers, quantum annealers and

simulators outperform any other method of solving QUBO problems [3],

but they are unrealistic for most people. We will use a quantum-classical

hybrid optimizer to test their viability of solving this problem. Figure 1

shows the effectiveness of each quantum-classical hybrid optimizer,

where the Y-axis is how often the optimizer finds the ideal solution, and

the X-axis corresponds to the complexity of the problem. Out of the

accessible quantum-classical solvers, the most accurate solution method

was a QAOA using an SPSA optimizer (Figure 1). Despite this, the

COBYLA optimizer is a better choice for the specifics of this problem

because it takes less time/processing power at higher dimensional

computation [3]. Because of this, we will use a QAOA with a COBYLA

optimizer to ensure the best results.

RESULTS.

 We tested this code before adding the structural and flight constraints

but even this reduced code caused a problem. The error message from

qiskit said that the matrix we were trying to solve was 2.25 quadrillion

dimensional, requiring 32 petabytes of RAM. After researching, we

discovered this was because of how qiskit interacted with our local

Figure 1. Comparison of Quantum-Classical Hybrid Optimizers, Y-axis:

Percentage of successful results, X-axis: Complexity of the problem to solve
[3].

system. Their method for converting QUBO equations to Ising matrices

was not designed for problems as large as the one we are trying to solve.

In response, we tried using qiskit runtimes to send our code to a public

quantum computer, but this also failed. We attempted to solve the

problem on local hardware with fewer variables; we reduced the number

of spaces and objects to 3, resulting in a 9-variable equation with several

geometric constraints. This was successfully computed, even on our

local hardware. Still, the solution took over a minute, suggesting that 9

variables are on the verge of what is solvable on local hardware with

qiskit.

DISCUSSION.

Qiskit could be an excellent alternative to quantum annealers since it is

free and accessible to anyone who owns a classical computer, but qiskit

is currently not advanced enough to solve a medium-sized aircraft

loading optimization problem. The way they simulate quantum gates on

classical hardware makes them ineffective for medium-size problems.

Even the 25-variable problem we tried was unsuccessful. Though the 9-

variable problem we tried was successful, most realistic problems are

greater than 9 variables, so Qiskit’s simulated QAOA is not powerful

enough to solve real-world problems. This was why we then tried using

a QAOA through qiskit runtimes, which uses public quantum computers

at IBM Quantum as the quantum part of the QAOA. This allows qiskit

runtimes to have access to substantially more computing power than

qiskit on a local system would. Qiskit runtimes also did not work

because qiskit started migrating their runtimes packages but has not yet

migrated their quadratic problem package. This makes it impossible for

the necessary functions to communicate with each other effectively and

thus leaves this problem unsolvable by qiskit runtimes. If qiskit were to

finish their migration, qiskit runtimes might be able to solve the 25-

variable aircraft loading optimization problem but more research is

needed to know for sure. The next step to allow bigger QUBO problems

to be solved is for IBM Quantum to add a quantum annealer backend.

By adding this, they would eliminate the need for a QAOA altogether

because we could just use quantum annealing to find the solution with

open-source quantum computers.

The advancement of quantum computing will benefit everyone. This is

because classical computers struggle to run programs that fall into the

NP-hard difficulty class, such as QUBO problems. Quantum computers

do not. The development of quantum computers could open entirely new

areas of research that are unreachable by classical computers. In

addition, programs solvable by classical computers could get a quantum

speedup, which means that the time computers take to run programs

could decrease. If local hardware improves, or IBM Quantum adds a

quantum annealer backend, tools like qiskit would become viable for

solving realistic QUBO problems. Publicly solvable QUBO problems

would save businesses the money that they would spend buying a

quantum computer because they could do it for free online.

CONCLUSION.

Publicly available QAOAs are not yet viable for solving the aircraft

optimization problem. Generally, publicly available QAOAs cannot yet

solve complex QUBO problems subject to multiple constraints. To solve

these problems, qiskit runtimes needs to finish migrating all its packages

so the quantum computers at IBM Quantum can run more powerful

QAOA’s and solve medium-sized QUBO problems. Additionally, IBM

should add a quantum annealer as a backend because it will eliminate

the need for a quantum-classical hybrid optimizer altogether.

Optimization is one of the domains most subject to quantum speedup;

having a quantum annealer backend would benefit people looking to get

into quantum optimization. A public quantum annealer backend could

become the mainstream method of solving the aircraft loading

optimization problem in higher dimensions or even QUBO problems in

general.

SUPPORTING INFORMATION.

The exact code used for optimization can be found in the supporting

information document.

REFERENCES.

1. F. Glover, G. Kochenberger, Y. Du, Quantum bridge analytics i: A tutorial

on formulating and using QUBO models. A Quarterly Journal of

Operations Research. 1, 1-14 (2018).

2. G. Pilon, N. Gugole, N. Massarenti, Aircraft loading optimization -

QUBO models under multiple constraints. Arxiv preprint

arXiv:2102.09621. 1, 1-8(2019).

3. N. Nayak, J. Rehfeld, T. Winker, B. Warnke, U. Çalikyilmaz, S. Groppe,

Constructing optimal bushy join trees by solving QUBO problems on

quantum hardware and simulators. BiDEDE '23. 7, 1-7 (2023).

Kyan Oakley is a student at

Northfield Mount Hermon

in Gill, MA.

