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BRIEF. This paper attempts to solve the aircraft loading optimization problem using publicly accessible quantum computers.

ABSTRACT. This paper explores a specific optimization problem 

called the aircraft loading optimization problem. It is an optimization 

problem that can benefit from a quantum speedup by a quantum 

computer. This problem can benefit from a quantum speedup 

because it is part of an optimization class called QUBO problems. 

These problems can be expressed as a matrix-vector product. 

Quantum computers can convert this matrix into an Ising 

Hamiltonian and then perform quantum annealing to solve it. 

Unfortunately, these quantum computers are expensive and 

inaccessible, so this paper attempts to solve the aircraft loading 

optimization problem on accessible quantum computers or quantum 

simulators, using quantum-classical hybrid solvers. We used qiskit 

optimization to set up the problem and then tried multiple ways of 

solving it. The first was to simulate a quantum computer on our local 

hardware with qiskit, which inevitably failed because the problem 

was too large for the qiskit simulators. The second attempt was to 

use qiskit runtimes with IBM Quantum. This also failed because the 

packages were not compatible with qiskit optimization, making 

medium-size QUBO problems unsolvable by open-source quantum 

computing. 

INTRODUCTION.  

In aviation, one of the known areas that can benefit from a quantum 

speedup is optimization. Quantum computers are particularly good at 

specific optimization problems because the superposition of qubits and 

their ability to perform quantum tunneling can be used to find the 

minimum state of the problem. One practical optimization problem in 

aviation is the aircraft loading optimization problem. The problem states: 

if you have ‘N’ objects and ‘M’ spaces in an aircraft, what is the optimal 

way to load the objects so the aircraft can still fly at maximal capacity? 

This problem falls under a classification of problems called Quadratic 

Unconstrained Binary Optimization (QUBO) problems. Due to their 

setup, QUBO problems lend themselves very well to solutions via 

quantum computers. This is because QUBO problems belong to the 

complexity class ‘NP’, meaning that the time taken to solve these 

problems can be expressed as a polynomial function of the number of 

variables in the problem if and only if solved by a nondeterministic 

Turing machine, which is a quantum computer. In other words, NP 

problems require quantum computers to solve. Typically, these quantum 

computers are expensive and inaccessible, so this paper aims to answer 

whether publicly available quantum computers, such as those at qiskit or 

IBM, can solve a twenty-five variable aircraft loading QUBO 

optimization problem. For low-variable problems, classical computer 

annealing may be powerful enough to find the optimal solution. As the 

problem size increases, classical annealing cannot handle the size of the 

problems, making quantum annealing and quantum-classical hybrid 

algorithms become appealing when the problems become bigger. 

A QUBO problem is a binary optimization problem. The problem is set 

up by defining some function of binary variables (variables that can only 

be 0 or 1) and optimizing this function. QUBO problems must be 

quadratic or linear and subject to no constraints. They appear in the form: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑦 =  𝑋⃗𝑇𝑄𝑋⃗  (1) 

where ‘X’ is a vector containing all binary variables, and Q is a matrix 

representing the coefficients of the linear and quadratic terms in the 

equation [1]. Most QUBO problems are first expressed as a typical 

function of variables, then they are rewritten into the vector form. The 

linear terms in the function can be mapped to the diagonal of the matrix, 

while the off-diagonal values refer to the quadratic terms. These QUBO 

matrices can come in two forms: upper right triangular and symmetrical. 

If the matrix had an upper right triangular form, the quadratic binary 

variable 5 · X(1) · X(2)would have a value of 5 in column 1 and row 2, 

which corresponds to (1, 2); if the matrix had a symmetrical form, 

though, the matrix would have an integer of 2.5 in (1, 2) and (2, 1) [1]. 

This works because when multiplying out the matrix-vector products, 

they are equivalent statements. 

Frequently, QUBO problems are not initially expressed in vector form, 

but rather as a typical equation of binary variables. Then, we can factor 

out a vector of binary variables and its transpose to get the matrix ‘Q’. 

An example of what a simple QUBO problem might look like is below. 

 𝑦 =  2𝑋(1)  +  4𝑋(2)  −  6𝑋(1)𝑋(2)  (2) 

Where X(n) are the binary variables. To convert this to a matrix, we can 

leverage the property that these are binary variables, and they can only 

take on the values 0 and 1, meaning that 𝑋(𝑛)  =  𝑋(𝑛)2. Once we do 

this, we can factor out the variable vector and its transpose. This gives 

us the equation: 

 
y =  [𝑋(1) 𝑋(2)] [

2 −3
−3 4

] [
𝑋(1)
𝑋(2)

]  (3) 

Multiplying out the matrix-vector product will yield equation 2, meaning 

they are equivalent statements.  This matrix contains the linear terms of 

equation 2 on the diagonal with the quadratic terms occupying the off-

diagonals. 

Although QUBO problems must be unconstrained, it is frequently useful 

to encode a constraint into the problem. Computer scientists have gotten 

around the unconstrained nature of QUBO problems by converting a 

constraint into a quadratic penalty function. The process is like Lagrange 

multipliers from Lagrangian mechanics in that you scale the constraint 

and subtract it from the main equation. The key difference between 

Lagrange multipliers and QUBO penalty functions is that the QUBO 

constraints must be changed into a new form by introducing more 

variables before they can be scaled and subtracted. Initially, QUBO 

constraints look something like this: 

 𝑋(3)  −  𝑋(2)  >  0  (4) 

To convert this to a QUBO solvable format, it must be converted to a 

penalty function [1]. The process of making a penalty function is not the 

purpose of this paper since qiskit has a function that converts constraints 

into penalty functions, so we will not get into it. By subtracting the 

penalty function from the original equation before converting to matrix-

vector form, the information of the constraint can be encoded into the 

problem by causing the equation to reach a higher value if the constraint 

is not met, meaning the minimum solution will not be found if the 

constraint is not met [2]. The conversion from equation form to vector 



 

form should only be done after subtracting the penalties because if not, 

the constraints will not be encoded into the problem. 

QUBO problems have a large capacity for quantum speedup because the 

matrix can be expressed as an Ising Hamiltonian, which is a matrix 

containing the spins of many different electrons to code for information. 

Quantum computers can then optimize problems by using these Ising 

Hamiltonians and quantum annealing. The most common optimization 

tool is a quantum annealer, a specific quantum computer that can only 

solve optimization problems. These are typically 15 million dollars, but 

they can solve problems with 1 million variables and over 100,000 

constraints. Quantum annealers use superposition probabilities to tunnel 

through the potential energy peaks to find a global minimum. Since these 

are very expensive, the alternative is a Quantum Approximate 

Optimization Algorithm (QAOA), a hybrid quantum-classical algorithm 

approximating the optimal solution using a less powerful quantum 

computer and a classical computer that communicate together to find the 

solution to the Ising matrix. This is the ideal optimizer for a medium-

sized QUBO problem because classical annealers are not equipped for 

their size, but quantum annealers are too expensive for their benefit to 

the medium problem size. Quantum-classical hybrid algorithms are also 

accessible: they can be simulated on a local system or exported to a 

quantum computer to run externally, meaning anyone with local 

hardware can use them. 

MATERIALS AND METHODS.  

The aircraft loading optimization problem has a simple minimization 

function because it is linear; the variables are scaled values of  X(a, b) 

where ‘a’ and ‘b’ are integers [2]. If the minimized value of this variable 

is ‘1’, object ‘a’ should be loaded into space ‘b’; however, if the 

minimized value of this variable is 0, it means that object ‘a’ will not be 

put into space ‘b’ [2]. Objects can have varying masses and take up 

different amounts of space, with some taking a half-space, others taking 

a whole space, and others taking 2 spaces. The overall function to 

minimize becomes: 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑦 = − ∑ ∑ 𝑡𝑎𝑚𝑎𝑋(𝑎, 𝑏)

𝑚

𝑏 = 1

𝑛

𝑎 = 1

 
 (5) 

Where “a” is the object number, 𝑚𝑎 is the mass of object a, “b” is the 

occupying space number, and: 

 

{
𝑡𝑎 = 1, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 1 𝑜𝑟 

1

2
  𝑎 𝑠𝑝𝑎𝑐𝑒

𝑡𝑎 =
1

2
, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 2 𝑠𝑝𝑎𝑐𝑒𝑠 

 

(6) 

Constraints will be utilized to ensure the structural integrity, the center 

of mass position, and the plane's lift collectively do not stop the plane 

from functioning. Constraints will also be used to stop physical 

geometry from being broken, such as 2 objects in 1 space when they each 

take up 1 whole space. 

The no-overlaps condition ensures that there are no overlaps within the 

spaces. This means that there won’t be multiple boxes in the same space 

unless they both have a size of half a space. The constraint follows: 

 
∑ 𝑑𝑎𝑋(𝑎, 𝑏) 

𝑛

𝑎 = 1

≤ 1 

{

𝑑𝑎 = 1, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 𝑢𝑝 1 𝑜𝑟 2 𝑠𝑝𝑎𝑐𝑒𝑠

𝑑𝑎 =
1

2
, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑡𝑎𝑘𝑒𝑠 𝑢𝑝 

1

2
 𝑜𝑓 𝑎 𝑠𝑝𝑎𝑐𝑒

 
(7) 

Next, we constrain our equation so that each object does not occupy 

multiple spaces: 

 
𝑡𝑎 ∑ 𝑋(𝑎, 𝑏)  ≤ 1

𝑚

𝑏 = 1

 

{
𝑡𝑎 = 1, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 1 𝑜𝑟 

1

2
  𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑡𝑎 =
1

2
, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎 𝑡𝑎𝑘𝑒𝑠 2 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

 

(8) 

The final geometric constraint that we must add ensures that objects that 

should occupy 2 spaces actually occupies 2 spaces, rather than just 1. 

The constraint equation follows: 

 
∑ 𝑋(𝑎, 𝑏)𝑋(𝑎, 𝑏 + 1)

𝑚−1

𝑏= 1

= 1 
(9) 

Rather than converting the constraints to penalty functions manually, 

qiskit can be used to convert them faster and more conveniently. 

Additionally, qiskit has a built-in function where it converts QUBO 

equations into Ising matrices, so there is no need to go into how that is 

done in this paper. 

Once qiskit has converted the problem into an Ising matrix, all that 

remains is the solution. Quantum computers can compute these quickly 

and efficiently. Out of all quantum computers, quantum annealers and 

simulators outperform any other method of solving QUBO problems [3], 

but they are unrealistic for most people. We will use a quantum-classical 

hybrid optimizer to test their viability of solving this problem. Figure 1 

shows the effectiveness of each quantum-classical hybrid optimizer, 

where the Y-axis is how often the optimizer finds the ideal solution, and 

the X-axis corresponds to the complexity of the problem. Out of the 

accessible quantum-classical solvers, the most accurate solution method 

was a QAOA using an SPSA optimizer (Figure 1). Despite this, the 

COBYLA optimizer is a better choice for the specifics of this problem 

because it takes less time/processing power at higher dimensional 

computation [3]. Because of this, we will use a QAOA with a COBYLA 

optimizer to ensure the best results. 

RESULTS.  

 We tested this code before adding the structural and flight constraints 

but even this reduced code caused a problem. The error message from 

qiskit said that the matrix we were trying to solve was 2.25 quadrillion 

dimensional, requiring 32 petabytes of RAM. After researching, we 

discovered this was because of how qiskit interacted with our local 

 
Figure 1. Comparison of Quantum-Classical Hybrid Optimizers, Y-axis: 

Percentage of successful results, X-axis: Complexity of the problem to solve 
[3]. 



 

system. Their method for converting QUBO equations to Ising matrices 

was not designed for problems as large as the one we are trying to solve. 

In response, we tried using qiskit runtimes to send our code to a public 

quantum computer, but this also failed. We attempted to solve the 

problem on local hardware with fewer variables; we reduced the number 

of spaces and objects to 3, resulting in a 9-variable equation with several 

geometric constraints. This was successfully computed, even on our 

local hardware. Still, the solution took over a minute, suggesting that 9 

variables are on the verge of what is solvable on local hardware with 

qiskit. 

DISCUSSION.  

Qiskit could be an excellent alternative to quantum annealers since it is 

free and accessible to anyone who owns a classical computer, but qiskit 

is currently not advanced enough to solve a medium-sized aircraft 

loading optimization problem. The way they simulate quantum gates on 

classical hardware makes them ineffective for medium-size problems. 

Even the 25-variable problem we tried was unsuccessful. Though the 9-

variable problem we tried was successful, most realistic problems are 

greater than 9 variables, so Qiskit’s simulated QAOA is not powerful 

enough to solve real-world problems. This was why we then tried using 

a QAOA through qiskit runtimes, which uses public quantum computers 

at IBM Quantum as the quantum part of the QAOA. This allows qiskit 

runtimes to have access to substantially more computing power than 

qiskit on a local system would. Qiskit runtimes also did not work 

because qiskit started migrating their runtimes packages but has not yet 

migrated their quadratic problem package. This makes it impossible for 

the necessary functions to communicate with each other effectively and 

thus leaves this problem unsolvable by qiskit runtimes. If qiskit were to 

finish their migration, qiskit runtimes might be able to solve the 25-

variable aircraft loading optimization problem but more research is 

needed to know for sure. The next step to allow bigger QUBO problems 

to be solved is for IBM Quantum to add a quantum annealer backend. 

By adding this, they would eliminate the need for a QAOA altogether 

because we could just use quantum annealing to find the solution with 

open-source quantum computers. 

The advancement of quantum computing will benefit everyone. This is 

because classical computers struggle to run programs that fall into the 

NP-hard difficulty class, such as QUBO problems. Quantum computers 

do not. The development of quantum computers could open entirely new 

areas of research that are unreachable by classical computers. In 

addition, programs solvable by classical computers could get a quantum 

speedup, which means that the time computers take to run programs 

could decrease. If local hardware improves, or IBM Quantum adds a 

quantum annealer backend, tools like qiskit would become viable for 

solving realistic QUBO problems. Publicly solvable QUBO problems 

would save businesses the money that they would spend buying a 

quantum computer because they could do it for free online. 

CONCLUSION.  

Publicly available QAOAs are not yet viable for solving the aircraft 

optimization problem. Generally, publicly available QAOAs  cannot yet 

solve complex QUBO problems subject to multiple constraints. To solve 

these problems, qiskit runtimes needs to finish migrating all its packages 

so the quantum computers at IBM Quantum can run more powerful 

QAOA’s and solve medium-sized QUBO problems. Additionally, IBM 

should add a quantum annealer as a backend because it will eliminate 

the need for a quantum-classical hybrid optimizer altogether. 

Optimization is one of the domains most subject to quantum speedup; 

having a quantum annealer backend would benefit people looking to get 

into quantum optimization. A public quantum annealer backend could 

become the mainstream method of solving the aircraft loading 

optimization problem in higher dimensions or even QUBO problems in 

general. 

SUPPORTING INFORMATION.  

The exact code used for optimization can be found in the supporting 

information document. 
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