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BRIEF. The following paper aims to explore how machine-learning techniques like Convolutional Neural Networks and MultiLayer Perceptron can be 

used to leverage real-time monitoring data to provide early warning systems for water pollution events, enabling timely response and intervention.

ABSTRACT. India faces a severe water pollution crisis, impacting 

public health and ecosystems. This project proposes a machine 

learning model using Convolutional Neural Networks (CNNs) and 

Multi-Layer Perceptrons (MLPs) that analyze real-time data to 

create an early warning system for increased pollution rates. This 

system can empower communities, authorities, and the public to take 

proactive measures, raising awareness and promoting water resource 

protection. The project builds upon existing research and datasets, 

using various forms of data augmentation and two different machine-

learning models for detecting the mode of pollution. The CNN model 

outperformed the MLP model due to its ability to understand spatial 

relations, leading it to have a 195.6% decrease in loss compared to 

the MLP model. We introduce a model capable of real-time 

inference in under 20 milliseconds, leveraging TinyML techniques 

to quantize our architecture, resulting in a 90% reduction in model 

size. 

INTRODUCTION. 

India is grappling with a staggering level of water pollution, which has 

a severe impact on public health, with an estimated 500,000 deaths [1] 

annually attributed to waterborne diseases. Moreover, various 

ecosystems are under significant stress, with nearly 80% of rivers and 

lakes facing serious degradation due to pollution. The increase in water 

pollution has been relentless, with a 55% rise in pollution levels over the 

last decade alone in India. 

In response to these statistics, the implementation of devices containing 

machine learning models offers hope for mitigating the impact of water 

pollution on the people of India. This system can be used by 

communities such as farmers near rivers to aid them in preventing crop 

damage due to high levels of water pollution. Such a system will help 

prevent losses due to crop failure and prevent the spread of waterborne 

diseases. By analyzing real-time data, the model can function as an early 

warning system by detecting when there is an increase in pollutants 

flowing in water bodies, helping to prevent potential hazards caused by 

large plastic accumulations. This timely intervention will play a crucial 

role in safeguarding public health and protecting vulnerable ecosystems. 

By leveraging data-driven insights, this machine learning model has the 

potential to make a significant difference in combating water pollution 

and promoting a sustainable and healthy environment for the people of 

India. 

Implementing devices that can trigger an early warning system can 

empower local communities and authorities to take proactive measures. 

By alerting them to potential pollution events and their locations, 

authorities can mobilize resources more efficiently and implement 

preventive measures, reducing the impact of water contamination on 

their lives. An early warning system can also play a vital role in raising 

public awareness about water pollution. By sharing alerts and 

information with the general public, the model can foster a sense of 

responsibility and encourage individual actions to protect water 

resources. 

In this study, we introduce a machine learning model specifically trained 

to detect contaminants present on water surfaces using convolutional 

neural networks. By generating bounding boxes, the model locates these 

pollutants. Our model can recognize floating objects in just 20 

milliseconds, underscoring its real-time efficacy in monitoring 

waterways. Our model’s output, as seen in Figure 1, can be used to 

identify the number of pollutants, and once a threshold is exceeded, an 

early warning can be sent out to help with mitigation. This CNN model 

is also compared to a Multi-Layer Perceptron model.  

MATERIALS AND METHODS. 

The training and testing dataset comprises a total of 2,000, 1280 x 720 

images, each annotated with a corresponding XML file, which is a text-

based document that stores data in the form of hierarchical elements. 

XML files are used to store, transmit, and reconstruct data. For the 

training set these XML files provide information regarding the number 

of pollutants present in each image, including their location through 

bounding boxes in the form of (x, y) coordinates. These pollutants 

mainly include plastic products. The dataset was sourced from previous 

research [3]. 

In our image localization project, we are utilizing a CNN, which was 

trained using this dataset due to its effectiveness in handling variations 

in images. Our approach involves passing the three RGB color channels 

as inputs to the CNN. Our CNN model follows a typical architecture, 

where each component serves a fundamental purpose: the convolutional 

layer is responsible for extracting features from the input images using 

filters, the pooling layer aims to reduce dimensionality to enhance 

computational efficiency while preserving critical features, the dropout 

layer is utilized to mitigate overfitting by randomly disabling some of 

the units during the training process, and the flatten layer transforms the 

multi-dimensional output into a one-dimensional array.  

To compare the effectiveness of different neural network models we 

compared this CNN to a MLP model. The model takes input images with 

dimensions of image height, image width, and the number of color 

channels, and flattens them into a 1D vector. It then consists of a 

sequence of dense (fully connected) layers with rectified linear unit 

(ReLU) activation functions with a varying number of nodes in each  

 

Figure 1. Model-generated bounding box outputs that accurately identify the 
positions of plastic pollutants within an image, highlighting their exact 
locations for further analysis or cleanup efforts. 



 

dense layer. Dense layers are fundamental components of a neural 

network that process the input by performing weighted sums followed 

by the activation function, essentially enabling the network to learn 

complex patterns from the data. The final layer employs a linear 

activation function and generates an output that corresponds to the 

dimensions required for predicting the coordinates of multiple bounding 

boxes, specifically, the number of bounding boxes to predict multiplied 

by 4. This output allows for object detection where identifying the 

precise location of objects is required. The architecture allows for 

customization by varying the number of nodes in the dense layers, an 

adjustment that can be made based on specific requirements. 

The objective of our neural network is to predict the position of objects 

within the image. We detect each object using a bounding box (x1, y1), 

(x2, y2), that describes the corners of the box that bound the image. To 

enable our model to detect multiple objects, we will multiply the 

bounding box dimensions (x1, y1, x2, y2) by the number of objects we 

want to detect to get the number of output nodes of our fully connected 

neural network portion of our CNN model. This approach enables our 

model to identify multiple objects simultaneously within a single 

inference cycle of our image recognition system. 

To get some information about what our image dataset contains, we 

gathered the summary statistics of objects found within the images. The 

average number of objects per image is 2.53 with the minimum being 1 

and the maximum being 17. Furthermore, we visualize the distribution 

of the number of objects found within the dataset in a histogram. The 

histogram indicates that most of our images have only a couple of 

objects. The distribution is skewed right and indicates that most of our 

images will only have 1 to 3 objects most frequently. 

We are also interested in discerning the prevalent locations of objects 

within the images. Understanding the distribution of objects within 

images is crucial as it enhances the generalizability of a model. This 

knowledge aids in building a more robust predictive model that can 

accurately detect pollutants across various scenarios. To achieve this, we 

extracted the bounding box information from the images and employed 

this data to generate a heat map. This heat map serves as a visual 

representation of the frequently occurring object locations within the 

images. 

Figure 2, shows a clear trend: the majority of objects detected are in the 

central region of the images. The majority of the detected objects are 

concentrated towards the central region of the images. Conversely, there 

appears to be a notable absence of objects near the upper portion of the 

images. This observation holds significant implications. It suggests that 

a model trained on these data will struggle to learn the characteristics of 

objects positioned near the top of the images. Consequently, this prompts 

us to consider strategies for enhancing the model's capacity to accurately 

predict pollutants situated in recurring positions. 

Given that a significant portion of our dataset originates from a single 

location, we found that a substantial similarity might exist among the 

images within our collection. This raises the concern that a model trained 

on such homogeneous data might exhibit limited adaptability when 

faced with more diverse data sources or varying environments. To gauge 

the extent of image similarity quantitatively, we leverage the `sklearn` 

similarity index package. This tool allows us to compute a similarity 

index, showing the degree of likeness between images.  

The outcomes of our analysis reveal a notable pattern. The majority of 

images share a similarity index that hovers within the range of 0.3 to 0.5. 

This range serves as an indicator that our dataset indeed comprises 

images with substantial similarities. Acknowledging this outcome 

reinforces the need for careful consideration when training our model, 

as its performance might be disproportionately influenced by the 

concentrated similarity within our data. To combat this, we used various 

data augmentation techniques to our data which included image rotation, 

zooming, and scaling. By applying these transformations to the existing 

training data, we generated new examples that are variations of the 

original ones. This helped generalize the model. 

RESULTS. 

The performance comparison between CNN and MLP yielded 

compelling results. The numerical outcomes demonstrate a significant 

disparity in the model performances, as evidenced by the stark contrast 

in their respective loss values. The validation loss is a numerical value 

that indicates how well the model performs on the validation dataset. It 

is calculated using a loss function that measures the discrepancy between 

the model's predictions and the actual target values in the validation set. 

The loss function used was mean squared error (MSE) which is a 

commonly used metric in machine learning and regression tasks, 

including neural network training. It measures the average squared 

difference between the predicted values and the actual values in a 

dataset. Here, MSE quantifies the average squared difference between 

the predicted positions of pollutants by the models (MLP and CNN) and 

their actual positions in the validation dataset.  

After training both models for 20 epochs the CNN model reported a 

195.6% decrease in the loss compared to the MLP model. Where epochs 

refer to a single cycle of training the neural network with all the training 

data. These findings indicate a notable advantage of the CNN 

architecture in effectively addressing the complexities inherent in the 

real-time monitoring data associated with water pollution events.  

DISCUSSION. 

Our investigation initially focused on comparing MLPs and CNNs in the 

context of our image recognition project. The comparative analysis 

provided valuable insights into the performance of these machine 

learning architectures. While MLPs offer flexibility in their architecture, 

CNNs, which operate at the feature level, tend to be better suited for 

image data due to their ability to capture spatial relationships. 

To gain a deeper understanding, we conducted experiments with various 

MLP architectures. We observed that MLP architectures with greater 

height and width tended to exhibit superior performance, which, in this 

context, means achieving a lower loss score indicating a closer match 

between the model’s predictions and the actual data. This phenomenon 

can be attributed to the increased complexity of functions within these 

architectures. Even with varying the different MLP architectures, their 

predictions were still not good enough to identify plastic accurately.  

 
Figure 2. This figure displays an Object Location Heat Map, where the 
intensity of colors ranging from dark to bright red correlates with the 

frequency of pollutant detection in different pixels of the image. The X-axis 

and Y-axis represent the spatial dimensions of the analyzed region, while the 
color gradient bar to the right indicates the scale of detection frequency, with 

red signifying higher concentrations and black indicating lower or no 

detection. The heat map shows a significant concentration of pollutants 
towards the center, suggesting this area is a primary location for pollutant 

accumulation. 



 

One significant limitation lies in the flattening process, which results in 

the loss of spatial information between pixels in the image. This is 

crucial in image processing and object localization processes since a 

cluster of pixels that represent plastic are usually clustered in the x and 

y dimensions. The flattening process leads to the loss of this information, 

which is very important to the identification of the plastic.  

This drawback led us to explore CNNs further. CNNs offer distinct 

advantages, as they operate at the feature level instead of the pixel level. 

This characteristic makes them particularly well-suited for image data, 

as they keep the spatial structure of the image intact.  

Our testing with CNN provided for a much lower error rate compared to 

our MLP model, as shown in Figure 3. For the MLP Model it begins at 

a validation loss of 13,877,020,672.0000, whereas for the CNN model, 

it begins at a validation loss of 155,520.4219. This is because CNNs are 

designed to account for spatial hierarchies in data, making them well-

suited for tasks like image processing and object detection. They can 

automatically learn hierarchical features through convolution layers. 

Such hierarchical features include edges, textures, and shapes, which are 

crucial for identifying objects in images.  

CNNs employ convolutional layers that apply filters to extract local 

patterns and features from images. These filters capture various aspects 

of the data, and their shared weights allow the model to recognize these 

patterns regardless of their location in the image. Moreover, we used 4 

convolutional layers with a filter size of 32, which represents the 

dimensions of the convolutional kernels used in each layer. This filter 

size determines the receptive field of the convolution operation, 

influencing the feature extraction process within our CNN. The filter 

size of 32 yielded the most accurate and credible results. However, to 

address the common challenge of overfitting in deep learning, we also 

implemented dropout layers in our model. These dropout layers played 

a crucial role in regularizing the network by preventing it from becoming 

too reliant on specific features or patterns in the training data. The drop-

out layers aim to take a first step towards tackling the high similarity of 

our dataset and the concentration of pollutants towards the center of our 

image.  

Lastly, our CNN included pooling layers that reduce the spatial 

dimensions of the feature maps while retaining valuable information. 

This helps to create a representation of the image's content, which is vital 

for object detection tasks.  

Furthermore, the practical deployment of machine learning models for 

real-time monitoring in remote locations, such as rivers in the context of 

our project, presents a unique set of challenges. Large-scale models that 

perform exceptionally well on high-performance computing systems can 

be impractical for deployment on resource-constrained embedded 

devices, which are often powered by limited energy sources. To address 

this challenge, our research emphasizes the utilization of smaller 

machine-learning models tailored for embedded devices.  

TensorFlow’s quantization was used to make this model more efficient 

for deployment on devices with limited resources, like the ones which 

will be deployed along the water sources. During the initial training of a 

neural network, high-precision values, such as 32-bit floating-point 

numbers, are commonly used to ensure accuracy. After training, the 

quantization process is applied, which involves reducing the precision of 

the model's weights and activations to lower bit-width representations, 

such as 8-bit integers. This reduction in precision helps save memory 

and accelerates inference on hardware with limited computational 

capabilities. As a result, we were able to achieve a remarkable size 

reduction of 91% of the original model size. 

CONCLUSION. 

In conclusion, the research undertaken to investigate the utilization of 

machine learning techniques for early warning systems in water 

pollution events has yielded valuable insights. Among the models tested, 

CNN has emerged as the most effective in leveraging real-time 

monitoring data for this critical task. Its superior performance in 

handling spatial features within the data, such as identifying pollutants 

in images or time-series data, has demonstrated its ability to provide 

timely alerts for potential water pollution events. 

Looking ahead we plan to explore various data augmentation techniques 

to increase the generalizability of our model. We also plan to improve 

this model by increasing the types of pollutants it can detect, for 

example: oil spills, plastics, harmful algae, and sewage.  

Furthermore, the study's generality can be enhanced by diversifying the 

types of machine learning techniques employed. In future investigations, 

we intend to incorporate other algorithms, such as Recurrent Neural 

Networks (RNNs) for time-series data analysis, Random Forests for 

ensemble learning, or Support Vector Machines (SVMs) for 

classification tasks.  

SUPPORTING INFORMATION.  

All the code behind the project can be found at 

https://github.com/Veer2906/Real-Time-Water-Pollution-Detection.git 

 

 

Figure 3. Error graph for MLP and CNN Model. As we can see, training 

reduces both the training and validation loss for both CNNs and MLPs. The 

final validation loss for CNNs is a lot lower than that for MLPs, showing that it 
is the superior model for this task. 
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