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BRIEF. This study provides comparison and evaluation of three 3D object detection methods and finds the one that achieves the best precision and 

accuracy. 

Abstract. A number of research papers have been published on 3D 

Object Detection methods of autonomous driving. However, these 

papers often describe approaches to specific problems or scenarios 

without providing comparison and evaluation of the existing 

methods and their limitations. The aim of the study is to compare and 

evaluate three methods for the 3D object detection benchmark in 

autonomous driving: Deep Learning and Geometry [1], 

Triangulation Learning Network [2], and Monocular 3D Object 

Detection [3]. Each of the three methods processes the left color 

images and camera calibration matrices from the KITTI dataset, and 

the results are compared with the training labels. By using the KITTI 

metric [4] and analyzing each of the method’s program codes, the 

performance, accuracy, and techniques are evaluated. The results 

demonstrate the reliability and accuracy of the Triangulation 

Learning Network [2] for 3D object detection, and it outperforms the 

other two methods. Finally, the article provides a general discussion 

of the three novel approaches for 3D object detection and insight into 

the development of better concepts and methods for this benchmark.  

INTRODUCTION. 

Autonomous vehicles and reliable self-driving machines have become 

more and more relevant in our everyday society. They decrease traffic 

jams, reduce accidents, and result in less fuel being wasted. 

Researchers have already begun implementing and improving self–

driving cars and models. They use benchmarks such as optical flow, 

visual odometry, 3D object detection, and 3D tracking to evaluate the 

accuracy of their model and have made vast improvements in the world 

of autonomous driving.  

Out of all these benchmarks, 3D object detection is the most important 

and indispensable part of the perception system. 3D object detection is a 

computer vision task that involves identifying and localizing objects 

(finding their orientation and position) in 3D space from sensory inputs, 

such as images, LiDAR data, or both. Through 3D object detection, 

autonomous vehicles can make real-time decisions to avoid collisions 

and ensure safe driving behavior, putting less stress and restrictions on 

the driver. Furthermore, with the introduction of deep learning, the task 

of object detection has grown significantly in terms of speed and 

accuracy, making it the most important and fascinating benchmark to 

research and evaluate in self-driving models.  

This paper seeks to investigate three different approaches to the 3D 

Object Detection benchwork including: Deep Learning and Geometry 

[1], Triangulation Learning Network [2], and Monocular 3D Object 

Detection [3]. It will discuss the benefits and drawbacks of the methods 

based on the techniques used in each program and the results from 

testing on the KITTI dataset [5], and provide an overall evaluation of 

each method.  

MATERIALS & METHODS. 

To begin testing and evaluating the approaches for 3D object detection, 

there must be a general understanding for each method.  

First, Deep Learning and Geometry [1] presents an approach for 3D 

object detection and pose estimation from a single image. It obtains 

relatively accurate 3D object properties using a deep neural network and 

then combines the approximations with constraints provided by a 2D 

bounding box to form a 3D bounding box. The first network output 

approximates the 3D object orientation, and the second network obtains 

the 3D object dimensions. These estimates, integrated with the 

constraints provided by the 2D bounding box, can recover a solid and 

accurate 3D pose. This method is simpler compared to the other two 

methods because it does not require preprocessing stages or 3D object 

models.  

The next method, Triangulation Learning Network [2], effectively 

utilizes stereo information resulting in lower costs for hardware and can 

adapt to different scales of objects. It employs 3D anchors to establish 

correspondences between the regions of interest in stereo images, from 

which the neural network learns to detect and triangulate the targeted 

object in 3D space. Additionally, it has a cost-effective channel 

reweighting strategy that biases the network towards key parts of the 

object and benefits triangulation learning.  

Finally, the monocular approach [3] performs 3D object detection from 

a single monocular image. The method seeks to generate a set of 

candidate class-specific object proposals, which are run through a 

convolutional neural network to obtain high-quality detections. In 

particular, it places object candidates in 3D, and then scores each 

candidate box displayed to the image plane via several intuitive 

potentials. They are then further processed by a convolutional neural 

network resulting in a fast 3D object detection.   

Overall, these methods each provide unique approaches to object 

detection and are beneficial in their own way. Next, are the steps for 

preparing the data, obtaining and tweaking the autonomous driving 

programs, and running the code on Google Colab.  

Dataset and Data Processing. 

The KITTI dataset was used to test the three methods. The KITTI dataset 

is a widely used benchmark for autonomous driving tasks, such as stereo 

vision, optical flow, scene flow, visual odometry, and 3D object 

detection. The dataset consists of high-resolution images and videos 

captured by a calibrated camera mounted on a car. It covers diverse 

urban scenarios and driving conditions, such as highways, residential 

areas, city centers, and country roads. The KITTI does not cover all 

environments such as rural and aerial views, however it overall provides 

a realistic and challenging testbed for evaluating and comparing 

different methods for autonomous driving applications.  

We used the 3D Object Detection 2017 data including the left color 

images, rights color images, camera calibration matrices, and the 

training labels of the object data set. The methods would generate results 

from processing the left and right color images and camera calibration 

matrices. The training labels, which contained the correct object name 

and exact location, dimensions, and orientation of the 3D bounding box, 

would be used to compare the results of each method. Because there  
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Figure 1: Comparison between the three methods for object detection in two testing images – the 007475.png (top three panels) and the 007479.png (bottom three 

panels). (A) Deep Learning & Geometry: 4 car objects detected in top image (007475.png) and 4 car objects detected in bottom image (007479.png). (B) Triangulation 
Learning Network: 7 car objects & 1 bus object detected (top) and 6 car objects & 1 bus object detected (bottom). Monocular 3D Object Detection: 7 car objects & 1 
bus object detected (top) and 6 car objects & 1 bus object detected (bottom). 

were over 7400 training images, camera calibration files, and training 

label files, we decided to take a subset of the data. we used 100 pairs of 

training images and camera calibration files, as well as 100 of the 

corresponding training labels to test and compare the results.   

AI Model. 

Open-source programs for the three autonomous driving models were 

obtained from GitHub and imported into Google Colab. Changes in the 

programs were made to match the environment of Google Colab and to 

provide the key data and results.  

First, efforts were made to optimize the hyperparameters, however there 

was little to no change in performance for each of the three methods 

indicating that optimization was reached. The three programs already 

had the most optimal hyperparameter settings targeting the accuracy, 

speed, and memory usage of each method. The hyperparameters 

involved in these 3D object detection methods included: 

1) The learning rate, batch size, weight decay, and optimizer for 

training the model. 

2) The type and parameters of the region proposal network, such as 

anchor shapes, scales, and ratios. 

Next, in each method, there was a main program that utilized modules 

including torch_lib.Dataset, library.Math, library.Plotting, and 

torch_lib.ClassAverages. The modules were added as program files 

below each of the main programs to make them executable in Google 

Colab. Next, data files were imported to each of the three Google Colabs 

including a camera calibration matrix file (with 100 data informations of 

traffic) for testing, pretrained weight files for reliable functioning and 

results, and a label dataset file to evaluate the resultsThen, each of the 

programs were truncated, and unnecessary variables and code segments 

were deleted. Functions were tweaked to provide key data about the 3D 

bounding box including: the object detected (i.e. pedestrian), the azimuth 

value, the coordinates of the bounding box, and its dimensions. In a 

separate program, the calculated results from the methods were stored 

and compared with the labels. Finally, methods were scored based on 

the KITTI metric. The official KITTI metric [4] for the evaluation 

calculated the following: Average Orientation Estimation (AOS), 

Average Precision (AP), and Orientation Score (OS). The Average 

Orientation Estimation is a value between 0 and 1, where 1 represents a 

perfect prediction. The Average Precision is a value between 0 and 1 that 

evaluates the localization algorithm and the performance of the object 

detection, and is calculated under the area of the precision recall curve. 

The Orientation score is the ratio of AOS over AP and represents the 

error averaged across all test images.  

RESULTS. 

According to Table 1, which summarizes the results for the three 

methods based on the KITTI metric [4], the Deep Learning and 

Geometry [1] method had the least AOS, Average Precision, and 

Orientation Score with values of 0.8523, 0.8678, and 0.9821 

respectively. The Monocular 3D Object Detection [3] performed 

decently with values of 0.9165, 0.9204, and 0.9958 for each of the three 

metrics. Finally, the Triangulation Learning Network [2] had the highest 

percentages for AOS and AP, 0.9434 and 0.9467, and the highest 

Orientation Score, 0.9965. Figure 1 shows the number and type of 

objects detected and the orientation and position of the predicted 

bounding boxes for the three approaches.  

DISCUSSION. 

Overall, the Deep Learning and Geometry [1] method detected the 

fewest objects and had the least precision and accuracy compared to the 

other methods. Its AOS, Average Precision, and Orientation Score were 

the lowest. The Monocular 3D Object Detection [3] performed better, 

with around a 6% increase in both AOS and Average Precision. The 

Triangulation Learning Network ultimately performed the best with the 

highest AOS, Average Precision, and Orientation Score. This method 

was able to consistently and accurately identify the position and type of 

most if not all objects: cars, buses, pedestrians, etc.  

Other articles and studies demonstrate the same results, and the 

Triangulation Learning Network [2], overall, is shown to be the best 

approach so far. However, the three methods each have novel and 

interesting approaches to identify objects and create 3D bounding boxes. 

Table 1. 3D Object Detection Evaluation for Three Autonomous Driving 

Methods 

Method AOS AP OS 

Deep Learning & 

Geometry [1] 
0.8523 0.8678 0.9821 

Triangulation Learning 

Network [2] 
0.9434 0.9467 0.9965 

Monocular 3D Object 

Detection [3] 
0.9165 0.9204 0.9958 



 

Deep Learning and Geometry [1] can recover relatively accurate 3D 

bounding boxes for known object categories from a single view. Using 

a MultiBin loss for orientation prediction and an effective choice of box 

dimensions as regression parameters, the method estimates stable and 

accurately-positioned 3D bounding boxes without additional 3D shape 

models or sampling strategies with difficult pre-processing pipelines.  

For the Triangulation Learning Network [2], the 3D bounding boxes 

predicted by the baseline network and the stereo method are presented 

in the above image in Figure 1B. In general, the predicted blue bounding 

boxes match the ground truths and labels very well when the 

Triangulation Learning Net is integrated into the base-line model. The 

method reduces depth error, especially when the targets are far away 

from the camera. Object targets missed by the baseline are successfully 

detected. For example, some subtle cars in the middle of the top image 

are detected as well as some heavily truncated cars in the right of the 

bottom image, since the object proposals are in 3D, regardless of 2D 

truncation. Overall, the Triangulation Learning Network [2] presents a 

novel network for performing accurate 3D object detection using stereo 

information. It includes a solid baseline monocular detector, which is 

extended to stereo by combining with the proposed Triangulation 

Learning Net. The network learns to triangulate the targeted object in a 

forward pass. It also introduces an efficient channel reweighting method 

to emphasize informative features and weaken unnecessary signals. All 

of this form the base-line detector and achieve great performance. 

There were a few limitations that may have caused some form of error 

in the results of the three methods. Namely, we used a small subset of 

the 7400 test images, camera calibration matrices, and training labels, 

100 of each (because of limited run time for results). In addition, there 

wasn’t a huge amount of training done before methods were run and the 

weights were only close estimates. In our next steps towards autonomous 

research, we will analyze more 3D Object Detection methods and use 

more datasets not just from KITTI, but also from other sites, such as the 

PASCAL VOC dataset. This will provide a further understanding of the 

methods used in autonomous driving and help with obtaining more 

accurate results and evaluations of their performance. 

CONCLUSION. 

In conclusion, the Triangulation Learning Network [2] was the best out 

of the three methods. Through specific techniques and algorithms, it 

identified more objects with better precision and accuracy. In general, 

the research provided a thorough understanding of the three methods and 

the essential concepts and ideas of each. Further research and evaluation 

of autonomous methods will lead to the development of better perception 

systems in autonomous driving and allow cars to handle more diverse 

scenarios, environments, and system configurations. 
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