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BRIEFS. This research project utilized a Deep Learning Classification Model to design an algorithm for the detection of pathological motion, 

whether Parkinson’s or dyskinesia, and the prediction of the clinical rating of Parkinson’s or dyskinesia severity based on movement features.

ABSTRACT. Diagnosing Parkinson’s disease (PD) is one of the 

largest challenges healthcare systems face due to the absence of a 

specific test for the condition and symptoms varying widely from 

person to person. Designing an automated model to aid in early 

diagnosis would greatly contribute to solving this problem. 

Currently, diagnosis for PD relies on clinical evaluation which has 

an error rate of approximately 20% [1], indicating the urgent need 

for an automated system to be developed. Levodopa is used for the 

treatment of PD but can lead to motor complications known as 

levodopa-induced dyskinesia (LID) when taken for too long. PD 

and LID are evaluated according to the Unified Parkinson’s 

Disease Rating Scale (UPDRS) and Unified Dyskinesia Rating 

Scale (UDysRS) scales, respectively, which range from 0 to 4 (0-

normal, 4-severely impaired) [2,3]. The tests are conducted by 

medical personnel and are very subjective because they rely on the 

experience of the rater. The goal of this project was to design an 

algorithm using deep learning for assessment of PD and LID using 

pose estimation. Two models were created: a regression model to 

predict the clinical rating from 0 to 4 and a classification model to 

determine whether the patient had PD or LID. During the feature 

extraction process, 32 features were extracted per joint trajectory 

including 15 kinematic, 16 spectral, and the convex hull of the 

movements. Then, the two neural network models were trained on 

these features to be able to predict their respective targets. The 

classification model achieved a mean F1-score greater than 0.86 

and the regression model attained a root mean square error less 

than 0.49 for the Communication task, proving that this project 

was a promising start in the venture to automate diagnosis of PD. 

INTRODUCTION.  

Nearly one million people in the United States live with PD and an 

array of associated disorders collectively known as parkinsonism [4]. 

At the present, diagnosis for PD relies on clinical evaluation which has 

an error rate of approximately 20% [1]. PD is a central nervous system 

disorder that affects physical movement, causing symptoms such as 

tremors, slowness, stiffness, and more physical symptoms. The cause 

of these involuntary movements begins in the brain, where the 

production of dopamine, the neurotransmitter that controls movement, 

is impaired. Without enough dopamine, the symptoms of PD become 

more severe. The main types of movement disorders that people with 

Parkinson’s may experience are tremors, bradykinesia, rigidity, 

dyskinesia, dystonia, freezing, drooling and gait disorder [5]. Since the 

discovery of levodopa in 1960, it has been used for the treatment of 

PD and is powerful enough to improve motor symptoms [6]. Extended 

use of levodopa has been found to cause levodopa-induced dyskinesia 

(LID) within 4–6 years in 40% of individuals [7]. LID refers to 

involuntary adventitious movements that usually occur after 

prolonged treatment with levodopa in PD patients. The term 

dyskinesia is applied to any involuntary movement, such as chorea, 

ballism, dystonia, tic, or myoclonus. The most common types of 

levodopa-induced dyskinesia are chorea and dystonia, which often 

coexist. Myoclonus, ballism, tics, or stereotypy are far less common 

[8]. Although PD patients follow up consistently with their 

neurologists for consultation, these follow-ups are not regular causing 

significant changes in a patient which are difficult to determine. Also, 

the clinical rating scales which are used to measure the PD symptoms 

require special trained personnel and are very subjective. This depends 

a lot on the skill of the nurses and clinician staff [9]. Sometimes 

patients use paper diaries for recording their symptoms, however 

making sense of the symptoms varies between patients and the doctor 

[10,11]. Clinical diagnosis completed per the Unified Parkinson's 

Disease Rating Scale (UPDRS) [2,12] and Unified Dyskinesia Rating 

Scale (UDysRS) [3] is used for assessing the severity of a patient’s 

disease.  

Deep learning is a class of machine learning algorithms that uses 

multiple layers to progressively extract higher-level features from the 

raw input data. Deep learning has the capability to create models that 

are trained on a dataset and can be used for classification or regression 

as per the requirements of the problem domain. Deep learning has 

immense potential and can be used to solve problems in the medical 

field for diseases as it is more efficient and provides faster predictions. 

However, it suffers from a need for more computational resources and 

is constrained by the data it is trained on  [13]. Pose estimation is a 

computer vision technique which is used to predict and track the 

location of a person or object. This is done by blending the pose and 

the orientation of a given person/object. Pose estimation has been used 

for recognizing motion, in Kinect [14], Convolutional Pose Machines 

[15] and Open Pose [16]. This process functions by recognizing the 

joints in the human body and using these to represent body parts. 

Using the joint information, it can then identify the gestures and 

actions performed by the human body. This leads to the measurement 

of movement from changes in posture of the individual undergoing 

examination. More precisely, the work done by Li et al [17] used a 

Vision-based assessment of PD and levodopa-induced dyskinesia with 

pose estimation. Video input of patients performing some particular 

activities was used as the input data. Using the  Convolutional Pose 

Machines, the distinctive movement of the joints were extracted to 

build a pose estimation model to classify and predict the scores of 

UPDRS and UdysRS. Sato et al. [18] incorporated a method which 

evaluated the disease by figuring out the length and duration of the gait 

and rhythm. The work utilized videos of healthy individuals and 

patients with Parkinson’s. They used the OpenPose technique and an 

unsupervised machine learning model.    

MATERIALS AND METHODS.  

Neural Networks. 

Neural networks were utilized for the model through TensorFlow, a 

set of tools and libraries for machine learning [19]. The core building 

block of a neural network is a layer which helps in extracting 

representations out of the data fed into them. Deep learning consists 

of chaining together simple layers to implement a form of progressive 

data distillation [20]. The algorithm finds a set of values for the 

model’s weights that minimizes a loss function for a given set of 

training data samples and their corresponding targets. The entire 

learning process is made possible by the fact that all tensor operations 



 

in neural networks are differentiable. Thus, it’s possible to apply the 

chain rule of derivation to find the gradient function mapping the 

current parameters and batch of data to a gradient value. This process 

is known as backpropagation. While configuring the learning, a loss 

function is minimized during training. The optimizer determines how 

the network should be updated based on the loss function. Metrics are 

a measure of success during training and validation. 

Data. 

The model used in this research utilized the identical dataset from 

previous work by M.H. Li, T. A. Mestre, S. H. Fox, and B. Taati. [17]. 

The acquired Kaggle dataset [21] contained pose estimates. The data 

was produced at the Center for Movement Disorders of Toronto 

Western Hospital. There were nine participants with PD and LID, 5 

men and 4 women, with an average age of 64 years. The dataset was 

divided into separate files for PD and LID, allowing the model to 

predict each condition separately. These participants were given 

certain tasks to be performed according to the standard assessment 

scales of UPDRS and UDysRS. The UDysRS Part III was used to rate 

the severity of dyskinesia and the UPDRS Part III was used to rate the 

severity of parkinsonism. The actions of the participants were taken 

through a 480×640 or 540×960 video camera of 30 frames per second 

as they stood directly opposite, while evaluations were made at a 

frequency of 15-30 minutes for a period of 2-4 hours by three specialist 

neurologists. The tasks assigned to the participants were the following 

below:  

• Communication – The participants were asked to describe an 

image, talk to the examiner, and answer mental math. This was 

conducted as per UdysRS Part III. 

• Drinking – The participants were asked to drink from a cup. 

This was rated as per UdysRS Part III. 

• Leg Agility – The participants were asked to stomp their legs 

with as much speed and amplitude as possible. This was rated 

as per UPDRS Part 3.8. 

• Toe Tapping – This was rated as per UPDRS Part 3.7.  

The features were extracted from the data. Convolutional Pose 

Machines (CPM) were used to find the joints of the human body from 

the videos. In this process 2D movement trajectories were extracted 

for head, neck, shoulders, elbows, wrists, hips, knees, and ankles. This 

study focused on building a regressor to predict the severity of PD and 

LID and a classifier to identify whether patients had PD or LID. 

Pre-processing of Data. 

In this stage of data processing, score thresholds were used to balance 

classes. For the communication and drinking tasks, a threshold of 0.5 

was used for binarizing scores. For leg agility a threshold of 1 was 

used and for toe-tapping binarization 2 was used. 

Feature Extraction from Movement Trajectories. 

 To improve the generalization potential of the model, a total of 32 

separate features were extracted per joint trajectory except for toe 

tapping: 15 kinematic, 16 spectral, and the convex hull of the 

movements. The 15 kinematic features were namely the maximum, 

median, mean, standard deviation and interquartile range of the speed, 

magnitude of acceleration and magnitude of jerk. This study focused 

only on the scalar kinematic features or features with only magnitude 

as the magnitude of movement was more important than the direction. 

The 16 spectral features were computed from the Welch power 

spectral density (PSD) and included the peak magnitude, entropy, total 

power, half point (i.e., frequency that divides spectral power into equal 

halves), and power bands 0.5–1 Hz, > 2 Hz, > 4 Hz, > 6 Hz for both 

the displacement and velocity PSDs. The final feature was the convex 

hull, which quantifies the area that a joint moved within. 

Background and Dependencies. 

The communication and drinking tasks were used to predict their 

respective UdysRS Part III item scores, while the leg agility and toe 

tapping tasks were used to predict their UPDRS Part III item scores. 

For each of the sub scores of the UdysRS and UPDRS, ratings were 

on a scale of 0–4, where 0 indicated normal motion and 4 indicated 

severe impairment. In order to build a deep learning model, Keras was 

used. Numpy, json, matplotlib, pandas, scipy, and seaborn were also 

leveraged. The regression model was chosen to predict the value from 

0 to 4 that corresponded with the UPDRS and UDysRS scales as its 

output was a continuous value. The classification model was also 

included in order to be able to simply diagnose whether a person had 

either condition. 

Regression Model. 

To determine the clinical rating of PD or LID severity based on 

movement features, regression was used. The neural network model 

for the regressor is shown in Figure 1 which uses 3 dense hidden layers 

with 480, 256 and 1 neurons. 

The hyperparameters for the regression model are summarized in 

Table 1. 

Classification Model. 

In contrast to the regression model which contained 3 dense hidden 

layers, the classification model contained only 2 due to it having a less 

complicated task. Dropouts were also not included in the classification 

model as they were found to be unnecessary in the simpler model. 

Binary classification was used to determine the pathological   motion, 

whether the patient had PD or whether they had LID. The neural 

network model for the classifier is shown in Figure 2 and used 2 dense 

hidden layers with 256 neurons and 1 neuron.  

Table 1. Hyperparameters for Regression Model. 

Optimizer Adam 

Activation Function ReLU, Linear 

Loss Function Mean Squared Logarithmic Error 

Batch Size 64 

Epochs 25 

Number of dense hidden layers with 
respective number of neurons  

3 with 480, 256, 1 

 

Figure 1. Regression model diagram depicting layers of the neural network 

with corresponding weights and activation functions. There are dropout layers 
in between the first three layers with a 20% dropout probability. 



 

 

Figure 2. Classification model diagram displaying three-layer neural 
network with corresponding weights and activation functions.  

 

Table 2. Hyperparameters for Classification Model. 

Optimizer Adam 

Activation Function ReLU, Sigmoid 

Loss Function Binary Crossentropy 

Batch Size 128 

Epochs 20 

Number of dense hidden layers 

with respective number of 
neurons 

2 with 256, 1 

 

 

The hyperparameters for the classification model are summarized in 

table 2. 

RESULTS. 

The following tables display the results of the various models for each 

of the four tasks and individual joint trajectories. The metrics of F1-

score and Area under the Curve were used to evaluate the 

Classification model and the metric of Root Mean Square Error was 

used to evaluate the Regression model. The Pearson coefficient was 

also included for the Regression model as an extra factor to help 

determine the correlation between the predicted values and actual 

values. Tables 7 and 8 showcase the superior performance of the 

model for the communication task in comparison to the other tasks, 

with a mean F1-score of 0.865 and Pearson coefficient of 0.709. The 

toe tapping and leg agility tasks performed similarly, with F1-scores 

of 0.861 and 0.831, respectively as seen in tables 3 and 5. However, 

the drinking task was by far the worst, with a mean F1-score of just 

0.495 as displayed in table 9. It also had the lowest Pearson coefficient 

of just 0.171 as shown in table 10.  

DISCUSSION.  

Overall, the results of the two models are very promising and prove 

the viability of this approach for diagnosing Parkinson’s disease and 

levodopa-induced dyskinesia. The communication task brings out 

involuntary movements and thus had the best performance. Drinking  

Table 3. Classification performance metrics for Toe Tapping task. 

 Left Right Mean 

F1-score 0.825 0.896 0.861 

AUC 0.500 0.642 0.571 

 

Table 4. Regression performance metrics for Toe Tapping task. 

 Left Right Mean 

RMSE 0.550 0.541 0.545 

r 0.206 0.485 0.345 

 

Table 5. Classification performance metrics for Leg Agility task. 

 Left Right Mean 

F1-score 0.837 0.825 0.831 

AUC 0.644 0.500 0.572 

 

Table 6. Regression performance metrics for Leg Agility task. 

 Left Right Mean 

RMSE 0.365 0.462 0.414 

r 0.593 0.243 0.418 

 

Table 7. Classification performance metrics for Communication task. 

 Neck Rarm Larm Trunk Rleg Lleg Mean 

F1 0.908 0.860 0.860 0.910 0.820 0.830 0.865 

AUC 0.925 0.874 0.878 0.915 0.739 0.804 0.856 

 

Table 8. Regression performance metrics for Communication task. 

 Neck Rarm Larm Trunk Rleg Lleg Mean 

RMSE 0.505 0.389 0.467 0.617 0.341 0.585 0.484 

r 0.784 0.523 0.743 0.864 0.537 0.804 0.709 

 

Table 9. Classification performance metrics for Drinking task. 

 Neck Rarm Larm Trunk Rleg Lleg Mean 

F1 0.759 0.332 0.439 0.598 0.500 0.539 0.495 

AUC 0.728 0.508 0.578 0.600 0.475 0.608 0.582 

 

Table 10. Regression performance metrics for Drinking task. 

 Neck Rarm Larm Trunk Rleg Lleg Mean 

RMSE 0.473 0.531 0.712 0.509 0.511 0.560 0.549 

r 0.234 0.172 0.173 0.087 0.120 0.241 0.171 

        

task arm subscore performance was inferior to other subscores due to 

the inability to differentiate voluntary from involuntary movements 

and increased occlusion of upper limbs during movement. The 

communication task achieved a mean RMSE of 0.484 and Pearson 

coefficient of 0.709 among all joint trajectories. This validated that it 

was able to recreate a clinical evaluation very well. Although the 

RMSE was similar for the communication and drinking tasks, the 

Pearson coefficient of 0.171 was lower in the drinking task, showing 



 

how its performance was comparatively worse. Most ratings for the 

drinking task were in the narrow range of 0 to 2, indicating the need 

for both RMS and Pearson coefficient to evaluate model performance. 

The communication task was the strongest for both classifying LID 

and determining its severity. For PD, leg agility was stronger for 

regression and toe tapping was stronger for classification. 

CONCLUSION.  

The results of the deep learning model prove the viability of using 

Artificial Neural Networks to predict and classify PD and LID. 

Levodopa is the most effective Parkinson’s disease medicine, however 

there are other treatments such as dopamine agonists which have their 

own side effects.  Furthermore, the model currently only requires the 

computational power of a laptop and could be scaled up to work with 

a larger dataset. A more accurate dataset could be obtained directly 

from multiple health care providers to try and minimize the error that 

is inherently present within the dataset. In the future, an automated 

system could be developed to detect changes in the severity of 

symptoms to trigger clinical trials for new therapies. 
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