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BRIEF. Interpretation and analysis of quantum random walk on various entangled circuits.

ABSTRACT. Quantum random walk is more promising than 

classical random walks by using quantum features such as 

entanglements and superpositions. Using a quantum coin, we 

implement quantum random walk on bell states and GHZ states 

with the IBM machine. Furthermore, we study all possible 

entangled states for two to six qubits and their quantum circuits to 

run quantum random walk. We show that applying the quantum 

random walk with the quantum coin results in  |0 >⊗n and |1 >⊗n. 

Measurements on other possible entangled states have a more 

unpredictable result. 

INTRODUCTION.  

Quantum Computing.  

Quantum computing is a revolutionary field that harnesses the 

principles of quantum mechanics to process information in ways that 

surpass classical computing capabilities. One of the key concepts 

includes entanglement, where one particle is instantaneously 

correlated with the state of another, regardless of the distance between 

them. Superposition enables quantum bits, or qubits, to exist in 

multiple states simultaneously, which increases the power of quantum 

computing [1]. This phenomenon can be utilized in applications such 

as cryptography, optimization, and simulation [2]. In addition, 

quantum entanglement, which creates highly correlated states between 

quantum particles, can have similar applications in those fields. 

Classical Random Walk.  

A classical random walk is a mathematical model that describes the 

movement of a particle in a series of discrete steps, where each step is 

chosen randomly from a set of possible directions. Visualized in 

Figure 1 as a particle takes steps in either a positive or negative 

direction along a one-dimensional line (possibly higher dimensions), 

the particle's position is updated after each step through an equal coin 

toss, and the process continues for a specified number of steps [3]. 

Quantum Random Walk. 

Quantum random walk is an extension of, but also an advantage to 

classical random walk, in that it utilizes superposition and 

entanglement. In a quantum random walk, a particle exists in a 

superposition of multiple locations simultaneously, represented by 

quantum states. At each step, the particle’s state evolves through a 

unitary transformation, which in quantum mechanics corresponds to a 

rotation of axes in the Hilbert space that does not alter the 

normalization of the state vector but a change in different components. 

These transformations are facilitated through quantum operators, 

where the probabilities of transitioning to neighboring nodes combine 

either constructively or destructively for different quantum paths [4]. 

The vast use of quantum random walks stems from the fact that: Firstly, 

quantum random walks can exhibit faster spreading or localization 

compared to classical random walks. Quantum interference can 

concentrate the particle's probability distribution in specific regions, 

leading to accelerated exploration or enhanced localization, depending 

on the setup. Secondly, quantum random walks can provide 

exponential speedups in certain algorithms and search problems via 

enhanced exploration, accelerated search, and exponential speedups in 

certain computational tasks [5]. 

The most important observation on quantum random walks is that in 

classical random walk, σ2 ~ T, where “σ” is the standard deviation of 

the random walk's probability distribution, and “T” is the number of 

time-steps of the random walk. For the quantum random walk, it is 

instead σ2 ~ T2
, meaning the standard deviation grows at a 

quadratically faster rate per time-step.  

More on the probability distributions as seen in Figure 2, the 

probability distribution of the classical random walk resembles most 

of a Gaussian distribution, since extreme positions from the starting 

node are less likely to happen in a stochastic model. However, in 

quantum random walk, the walker is allowed to travel separate 

directions at the same time because of superposition. With this, 

constructive/destructive quantum interference increases or decreases 

the probability of certain positions due to the overlap of different paths, 

thus producing a probability distribution that is more complex than 

that of classical random walk. Figure 2 shows how quantum random 

walk has a different probability distribution in final positions at 

different peaks than does classical random walk [6].  

Quantum Walk with Quantum Coin. 

Within quantum random walk, there exists a quantum coin that guides 

the evolution of the quantum walker. This approach allows for more 

control and flexibility in manipulating the walker's behavior. This coin 

 

Figure 1. (Bottom) The walker starts at “0” with no steps taken. (Top) The 
walker moves through each step of the random walk, with the 1st step a1, 

the second step a2, the third step a3 and etc. The “+1” represents a step to 

the right, while a “-1” represents a step to the left. Here, 5 steps have been 
taken and the final destination of the walker is at -1 on the line. 

 

Figure 2. In classical random walk, the walker travels a single node per unit 
time in its stochastic model, while quantum random walk utilizes 

superposition for all the nodes’ states and applies unitary transformation 

through the particle’s evolution. Every arrow for each node represents a 
singular path taken in the classical random walk example, while the arrows 

for each node represent multiple paths taken simultaneously. The 

probability distributions of the final position of the walker is different in 
each of the random walks, as shown by the height of the orange bars.  



 

 

 

represents a quantum system that can be prepared in a superposition 

of basis states. The evolution of the walker involves two main steps: 

the coin operation and the conditional shift operation. The coin 

operation applies a unitary transformation to the coin degree of 

freedom, while the conditional shift operation modifies the walker's 

position based on the coin state. In a standard quantum random walk 

with a quantum coin on a line graph, the Hadamard gate (H) is often 

used as the coin operation [7]. Using the Hadamard gate as the 

quantum coin is just one of many gates that can be used in quantum 

walk. But the Hadamard gate, as represented by 

H =
𝟏

√𝟐
[
1 1
1 −1

] 
(1)                                                                                            

allows for equal probability distributed within the superposition. 

Applied to the coin qubit, the Hadamard gate creates a superposition 

of the basis states, leading to an equally balanced exploration of both 

left and right directions in subsequent steps of the walk, known as a 

plus state, which uses bra-ket notation: 

|+> =  
|𝟎 >  + |𝟏 >

√𝟐
 

(2)                                                                                       

MATERIALS AND METHODS.  

Quantum random walks on entangled states are analyzed for two to 

six qubits. One way to represent these qubits is via a four-nodes graph 

as shown in Figures S1~S4. Quantum states of qubits are denoted as 

such:  

|0 > =  [
1
0

] (3)                                                                                           

|1 > =  [
0
1

] (4)                                                        

There are two different types of entangled states: Greenberger-Horne-

Zeilinger states (maximally-entangled states produced by the 

Hadamard gate through  

|GHZ > =  
|𝟎 >⊗𝐧 +  |𝟏 >⊗𝐧

√𝟐
 

(5)                                                                                          

where an n-qubit GHZ state has the basis states |0 >⊗n and |1 >⊗n 

in Eq. 5, denoted as tensor products (⊗)), and partially entangled 

states. Unlike GHZ states, partially entangled states of two or more 

particles become correlated in such a way that the state of one particle 

cannot be described independently of the state of the other particle, 

even when separated. In another perspective, the measurements of 

GHZ states fully collapse to a single state, like |0> or |1>. However, in 

partially-entangled states, the measurement does not necessarily 

destroy the entangled state of others. An example of such a partially-

entangled state is 
|110>+|101>+|011>

√3
 . If the first qubit of this state 

(where the first to third qubit is represented from left to right for each 

basis state), is measured and collapsed to |1>, the result is |1>⊗ (|10> 

+ |01>). The measurement can be represented as a tensor product of 

two or more states, with one of those states being a special entangled 

state for two-qubits (called a Bell state), |10> + |01>. Thus, we find 

that after measurements of partially-entangled states, the result only 

partially collapses all the basis states.  

As shown in Figures S1~S4, each node in the graphs (qubit) are 

labeled from A-D, where enclosed line around qubits represents a 

maximal-entanglement around the enclosed qubits. Figure S1 

represents an entangled state of qubits A and B, which represents the 

simplest entanglement of qubits. In Figure S2, the lines encompass 

qubits A, C, and D, which is a 3-qubit entangled cluster. Subsequently, 

Figure S3 shows an entanglement between all four qubits. However, 

Figure S4 represents a partially entangled state, which only exhibit 

some degree of entanglement between the constituent quantum 

systems. They are not fully entangled in the representation of a graph, 

since more than one entangled cluster overlaps each other. Thus, graph 

4 represents a combination of an entangled state between qubits A and 

B and a 3-qubit GHZ state with qubits A, C, D.  

Although the quantum graphs are only visually represented with 

entangled states of up to four qubits, entangled states are analyzed up 

to six qubits. Over sixty different combinations and hundreds of 

different permutations of possible superposition states for two to six 

qubits were analyzed; with such variety, examples of different 

possible entangled states and other references for two to six qubits can 

be found on https://drive.google.com/drive/folders/17nE74v-

2zp1Y6Rc0rfbeoECo41yBX6LH?usp=sharing.  

 

Figure 3. Quantum circuits created on IBM Quantum Composer in this 
study. Every gray line on a quantum circuit denotes a position of a qubit, as 

listed by indices starting at 0 (q[0], q[1],…etc.). Each qubit starts initially 

with a state of |0>, and are manipulated by adding quantum gates to qubit(s): 

The “H” gate represents the Hadamard gate, the “+” gate represents the 

CNOT gate, and the gray boxes represent measurements of each qubit, 

which are represented as arrows pointing down to c(n), where n is the 
number of qubits. 

As a representation of quantum states, quantum circuits are created 

using different gates. The simplest of these to create are the GHZ states. 

In Figure 3, the top circuit shows a representation of a GHZ state of 

two qubits while the bottom circuit represents a GHZ state of 5 qubits 

using the Hadamard gate and CNOT gate(s), which are two-qubit 

quantum gates that flip a target qubit if and only if the control qubit is 

in the state |1> using the matrix representation [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]. 

For non-GHZ states, the process is more complex. Though GHZ states 

can be created with just Hadamard and CNOT gates, non-GHZ states, 

which can be factored by a |0 >⊗n or|1 >⊗n, require the use of NOT 

(performs a bit flip on a qubit through the configuration [
0 1
1 0

]) and 

Z gates (performs a phase shift on a qubit but leaves the basis states 

|0> and |1> unchanged through the configuration [
1 0
0 −1

] ). The 

process for finding all the non-GHZ states starts with choosing the 

number of qubits used and the number of basis states for the entangled 

state (Within the scope of this study, only superposition states that 

contained an even number of basis states were considered). If, for 

example, the conditions are five qubits with four basis states, a 

possible entangled state under those conditions is chosen. One 

example is the state represented in Figure 

https://drive.google.com/drive/folders/17nE74v-2zp1Y6Rc0rfbeoECo41yBX6LH?usp=sharing
https://drive.google.com/drive/folders/17nE74v-2zp1Y6Rc0rfbeoECo41yBX6LH?usp=sharing


 

 

 

S5:  
|10000> + |01000> + |00100> + |00011> 

√2
 . Then, combinations of 

applying NOT and Z gates on different qubit locations over the 

particular superposition state are produced and measured. An example 

of a combination is by applying a NOT gate to every second and third 

qubit in the circuit for Figure S5 as shown in Figure S6, or a Z gate to 

the fourth qubit of each basis state in Figure S7. After listing out all 

possible entangled states from two to six qubits in this manner, all the 

states were created and visually represented via the quantum IBM 

composer to create the quantum circuits, get the probability 

distribution of the basis states in each superposition, and receive the 

number of actual outputs of basis states in each superposition state. 

RESULTS. 

After running the measurements for all the entangled states and those 

associated with the quantum random walks on the GHZ states on 1,024 

shots (measurements), there were two main results: When measuring 

the outputs of each of the basis states for the entangled states, there 

was no clear pattern shown on what would give the most outputs for 

one basis state. Instead of a conclusion, there can only be observations 

based on the measurements for the entangled states. For example, 

Figure 4 shows a histogram of the number of frequencies for each of 

the basis states illustrated in Figure S8: 

 

Figure 4. Quantum circuit and graph created on IBM Quantum Composer. 
Out of 1,024 shots (measurements of the superposition), the frequency 

output of individual basis states |0100>, |10001>, |10010>, and |10100> are 
recorded. 

There are 258 outputs for |01000>, 242 outputs for |10001>, 251 

outputs for |10010>, and 273 outputs for |10100>. These results can 

be shown for all entangled states in another place. In addition, when 

starting on a different qubit on the quantum random walks for 3 to six 

qubits, the outputs of each of the basis states were not the same and 

unique as just measuring the entangled states. However, almost all of 

the quantum random walks had the most outputs on either |0 >⊗n or 

the |1 >⊗n basis state, which are found in the basis states of GHZ 

states, where n is the number of qubits used in the quantum random 

walk. The only exception in the measurements were two quantum 

circuits with five qubits, shown in Figure S9 which showed the highest 

output on the basis state |11011>, and Figure S10, which showed the 

highest output on the basis state |00100>. 

DISCUSSION. 

The goal of this study was to explore the entangled states, their 

representation on quantum graphs, and applications of quantum 

random walk over GHZ states. The results demonstrate that by 

measuring quantum random walk with a quantum coin on the GHZ 

states, the basis states that have the most output are mainly the basis 

states that come from the GHZ states themselves, although there 

wasn’t a clear obvious pattern for which basis state had the most 

frequent output. However, one can conclude that information stored in 

each qubit of the basis states that resemble those of the GHZ basis 

state may have the highest probability in yielding results when 

measured. This information may be useful, since quantum basis states 

that either store all 0’s or all 1’s (or in different contexts, all yes’s or 

all no’s) on average are more likely to happen when measured using 

quantum random walk. One thing for certain is that the measurement 

results are derived from more computational power on quantum 

versions of random walk, which shorten the amount of time and space 

to run computations of a given path position across graphs. 

Specifically, the idea that superpositions allow for quantum walks to 

travel multiple paths through a graph simultaneously while classical 

random walks only allow a walker to travel a single path at a time, 

supports the fact that quantum computation offers high potential in 

random walk applications. 

Limitations for this analysis include that not all non-GHZ states 

created on the quantum composer were considered and that the 

methods only covered non-GHZ states with even numbers of basis 

states in its superposition. Due to the overwhelming complexity of 

non-GHZ states with odd-number basis states, they are not included in 

this study. In addition, future research can delve into the possibilities 

of quantum graphs and quantum random walks with systems 

containing more than six qubits. Other factors may be tested, such as 

analyzing more than six qubits due to the nature of exponential growth 

of possible entangled states, or using different coin registers for the 

quantum random walk. Instead of a Hadamard coin, one could use the 

Grover coin, or other shift operations that alter the freedom of the 

walker throughout each step. The number of shots used to record the 

output frequencies for the different basis states could’ve been more 

than 1,024 or less than 1,024 shots used as well. These factors could 

possibly produce a more consistent, spontaneous pattern of basis states 

that tend to receive the most output when measured.  

Altogether, these experiments are possible through the properties of 

quantum computation, allowing for discoveries in search algorithms, 

optimization problems, simulations, and machine learning. As shown 

by the advantages of quantum random walk, such quantum algorithms 

may contribute to the development of algorithms that leverage 

entanglement to explore solution spaces in a manner that surpasses 

classic algorithms, leading to a potential speedup in problem-solving. 

For example, new discoveries in quantum random walks may play a 

role in enhancing the security and efficiency of quantum 

communication that focuses on the secure transmission of information 

using the principles of quantum mechanics. Thus, the possibilities of 

quantum walk behavior should be further analyzed for the 

advancement of less-cost, efficient systems. 

SUPPORTING INFORMATION. 

Supporting Information includes Entangled Graph Diagrams for 

Partially-Entangled States and Quantum Circuits for Corresponding 

Entangled Circuits in the Materials and Methods.  
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