A Machine Learning Method to Achieve High Accuracy in Galaxy and AGN Classification using Photometric Data

Sushanth Elangovan, Antonio C. Rodriguez

SUPPORTING INFORMATION

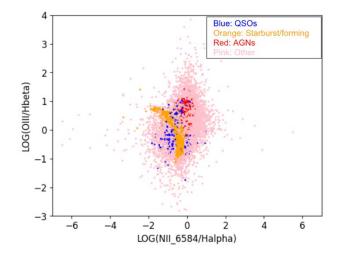


Figure S1. Original BPT diagram plotted into four groups: blue (QSOs), orange (Starburst/forming), red (AGNs), pink (other galaxy types). The distribution and clustering of QSOs, Starburst/forming, and AGNs can be seen on spectroscopic axes LOG(OIII/Hbeta) and LOG(NII_6584/Halpha). Misclassification is noticeable as datapoints overlap across multiple categories, leading to the need for a better classification model to clearly separate the groups.

GALAAT -only dataset (photometry and spectroscopy readings)		
n_estimators	test_size	accuracy
64	0.15	0.81
64	0.2	0.81
64	0.25	0.81
100	0.1	0.81
100	0.15	0.81
100	0.2	0.81
100	0.25	0.82

 Table S1. Random Forest Classification of AGNs within filtered

 GALAXY-only dataset (photometry and spectroscopy readings)

Table S2. Logistic Regression of AGNs within filtered GALAXY-only dataset (photometry and spectroscopy readings)

dutuset (photometry and speed oseopy readings)		
test_size	accuracy	
0.1	0.76	
0.15	0.77	
0.2	0.77	
0.25	0.77	