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BRIEF. Regularized logistic regression with a LASSO penalty can be used to predict ovarian cancer with high accuracy using biological data.

ABSTRACT. Ovarian cancer affects thousands of women annually. 
Currently, there is no screening test that is widely recommended for 
early detection of ovarian cancer. However, the analysis of certain 
biomarkers has demonstrated promising prospects in the prediction 
of ovarian cancer. Previous studies have selected various 
combinations of features in order to build predictive machine 
learning models using logistic regression or decision tree analysis. 
In an effort to select important features and to predict cases of 
ovarian cancer within a single unified framework, we proposed a 
logistic regression model with a LASSO regularization penalty. The 
resulting model selected 30 features with significance in predicting 
ovarian cancer (including three clinically relevant biomarkers: HE4, 
CA125, and CEA) and demonstrated high accuracy, sensitivity, and 
specificity. The results demonstrate the viability of using a logistic 
regression model with a LASSO penalty and provide a baseline for 
further research involving cross-validation. 

INTRODUCTION.  

Ovarian cancer has the fifth highest mortality rate of all cancers among 
women. The National Cancer Institute predicted that in 2021, there 
would be a total of 21,410 cases and 13,770 deaths attributed to ovarian 
cancer [1]. Unfortunately, there are currently no screening tests that 
professionals have widely recommended to detect ovarian cancer in its 
early stages [2]. It is critical to improve methods for the early detection 
of ovarian cancer, as accurate screening has been projected to reduce 
mortality by 10% to 30% [3]. Many groups have investigated biomarkers 
to predict ovarian cancer, which is proving to be a promising area for 
further research [4-8]. 

Many screening strategies have involved testing patients’ blood for the 
presence of biomarker protein cancer antigen 125 (CA125), which is 
often produced in higher levels in women with ovarian cancer and has 
proven to serve as a robust predictor for ovarian cancer [8, 9]. However, 
better prediction accuracy, particularly in earlier stages, has been 
achieved when evaluation of CA125 is used in conjunction with other 
strategies such as transvaginal sonography or other biomarkers such as 
human epididymis protein 4 (HE4), which is produced by many 
epithelial ovarian cancer cells [4, 8]. 

In one key study on predicting ovarian cancer, Lu et al. chose to evaluate 
49 features ranging from biomarkers to patient characteristics such as 
age or blood routine test results to develop their model [10]. They 
implemented a form of filter type feature selection in order to determine 
which of these features were most significant to aid with their prediction 
and used a decision tree to predict an individual’s likelihood of 
developing ovarian cancer under the final subset of features [10]. More 
specifically, they used a combination of Minimum Redundancy 
Maximum Relevance (MRMR) feature selection, ReliefF feature 
selection, and decision tree analysis to carry out their modeling 
procedure [10]. Ultimately, they found that a decision tree approach 
using HE4 and carcinoembryonic antigen (CEA) could be used to 
achieve a predictive accuracy of 92.1% [10]. 

In an effort to simultaneously select important features and predict risk 
of ovarian cancer within a single unified framework, we propose 
constructing a logistic regression model with a Least Absolute Shrinkage 
and Selection Operator (LASSO) regularization penalty.  LASSO is a 

regularization penalty that operates on the objective function of well-
studied regression problems. Under LASSO, models such as logistic 
regression can estimate their parameters while simultaneously selecting 
features that are important (see Methods). This is a critical distinction 
from the Lu et al. model as we avoid treating feature selection and model 
prediction as two separate processes, instead consolidating them under a 
single, unified model. Using this approach, we aim to achieve a 
predictive performance comparable to that of the Lu et al. model while 
also selecting a set of significant features that encompasses those 
originally selected. The ultimate intent of our work is to predict whether 
or not an individual is likely to eventually be diagnosed with ovarian 
cancer based on their biological data. 

MATERIALS AND METHODS.  

Data. 

The dataset used in this study consists of data sampled from 349 patients 
(171 patients with ovarian cancer and 178 patients with benign ovarian 
tumors) from the Third Affiliated Hospital of Soochow University, 
enrolled between July 2011 and July 2018 [10]. Following the patients’ 
surgical resection, diagnostic pathology identified each patient as 
belonging to one of two groups: either Benign Ovarian Tumor (BOT) or 
Ovarian Cancer (OC) [10]. Biological information collected from each 
patient included blood routine tests, general chemistry tests, and tumor 
marker analysis [10]. The dataset includes 49 potentially relevant 
features such as demographic, age, blood routine test results, and various 
biomarkers [10]. Lu et al. sought to use this dataset in order to perform 
filter type feature selection and develop a model for predicting ovarian 
cancer [10].  

To prepare the data, we performed the following data pre-processing 
steps: First, we removed data points that contained inappropriately 
labeled information. We also removed any columns that contained a 
significant amount of missing data, namely biomarker columns NEU and 
CA72-4, and imputed any remaining missing information using the 
mean values computed from the training data. Furthermore, we 
standardized our features to have zero mean and unit variance, a 
requirement for the regularization penalty discussed in our Methods 
section.  

In their study, Lu et al. partitioned their dataset into training and testing 
sets. We combined these datasets into a single set and randomly selected 
70% of the data points to make up the training data. The remaining 
values were used for testing. We further divided the training data 
according to an 80:20 ratio to allow for hyperparameter tuning. After 
this further partitioning, 80% of the data (191 data points) made up the 
sub-training set, and 20% (48 data points) made up the validation set. 

Methods. 

In order to achieve more accurate predictions with our logistic regression 
model, we applied regularization with an L1 penalty. Generally, 
regularization is the process by which a model’s coefficients, or weights, 
are penalized [11]. This approach prevents the model from being 
overfitted to the training data, which could result in greater inaccuracy 
when we apply the model to previously unseen data [11]. When λ, the 
LASSO tuning parameter, is zero, the model performs multiple logistic 
regression with no penalization. When λ is very large, the absolute 
values of the coefficients all shrink to zero [11]. This means that LASSO 
regression also serves as an effective form of feature selection because,  



 

for an appropriate choice of λ, irrelevant features immediately shrink to 
zero (deselection), whereas the significant features remain non-zero 
(selection). To ensure the LASSO penalty is evenly applied to each 
coefficient, we must standardize our features. The LASSO penalty 
utilizes the L1 norm as follows, where 𝛽𝛽 is a regression coefficient: 

𝑅𝑅(𝛽𝛽) = ‖𝛽𝛽‖1 =  �|𝛽𝛽𝑖𝑖|
𝑛𝑛
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To determine the most appropriate regularization strength, we iterated 
through multiple values of λ and evaluated the predictive accuracy on 
the validation data for each one. 

RESULTS. 

In order to select the appropriate value of λ to achieve a model with the 
highest possible predictive accuracy, we divided the preprocessed data 
into training and testing datasets. We further divided the training data 
into sub-training and validation datasets. We iterated through various 
values of λ using both the sub-training and validation datasets and 
identified λ = 2 as the most appropriate regularization strength (see 
Figure 1). 

Our goal is to maximize accuracy for both the validation and sub-
training data while maintaining minimal difference between them. When 
λ equals 2, both of these criteria are true, indicating that the highest 
predictive accuracy should occur around this point. When we fitted a 
logistic regression model to the testing data using a LASSO penalty of 
2, our model obtained an accuracy of 90.6%. The model selected 30 
features, including HE4, CA125, and CEA. 

We calculated a few key diagnostics to evaluate the success of the model. 
As stated, its accuracy was 90.6%, indicating that it was able to predict 
the correct outcome 90.6% of the time. Its sensitivity was 86.8%, 
indicating that it correctly predicted 86.8% of all ovarian cancer 
outcomes. Finally, its specificity was 100.0%, indicating that it correctly 
predicted all benign tumor outcomes. All three metrics demonstrate high 
values. 

DISCUSSION. 

Lu et al. implemented a Minimum Redundancy-Maximum Relevance 
feature selection that sought to ensure that the selected features were 
mutually maximally dissimilar. However, their approach involved a 
complicated process of dividing the available data into ten sample 
groups (significantly reducing the already-small sample size), selecting 
features from each sample group, and then constructing a 5-level 

decision tree model. They then repeated this process ten times to find the 
highest accuracy. Ultimately, Lu et al. determined that they were able to 
achieve an accuracy of 94.3% on their validation data when the model 
utilized the selected features CEA and HE4.  

The approach taken in our study is distinctive from that of Lu et al.’s due 
to the simplistic nature of the logistic regression model with a LASSO 
penalty. Our model was developed without requiring division into even 
smaller samples or the construction of a complex decision tree. We were 
also able to achieve a predictive accuracy on our validation data of 
90.6%, which is relatively comparable to the accuracy achieved by Lu 
et al. Furthermore, our study’s feature selection, while simpler than Lu 
et al.’s, did successfully select both CEA and HE4 in addition to other 
biomarkers selected in previous studies, such as CA125 (see Figure 2). 

Regularizing logistic regression has the ability to shrink coefficients 
with respect to λ. In examining this trend, we observe that some of the 
features selected in previous studies were resistant to shrinking to zero 
for higher values of λ, highlighting the significance of these particular 
features in predicting ovarian cancer. 

In order to further investigate the significance of certain features, we 
evaluated the magnitudes of their regression coefficients (see Figure 3). 

Through our literature review, we found that HE4 is a biomarker that is 
commonly identified by previous studies to have high significance in 
predicting ovarian cancer. In accordance with this finding, HE4 has a 
significantly high coefficient magnitude compared to all other features. 
CA125, another feature commonly utilized in previous studies, has the 
second highest coefficient magnitude. CEA, the other feature selected 
by Lu et al. in addition to HE4, does not necessarily demonstrate a high 
coefficient magnitude when compared to the other features. However, 
the observable magnitude indicates that the model identified it as having 
some significance in ovarian cancer prediction. 

Furthermore, the high values for the key model diagnostics—accuracy, 
sensitivity, and specificity—suggest that the model offers a novel 
method of accurately predicting ovarian cancer outcomes with low risk 
for false positives or false negatives. If either sensitivity or specificity 
were significantly low, it would have limited the model’s usefulness in 
certain situations. However, these metrics indicate that the model may 
be useful in a variety of contexts, as a high degree of trust can be placed 
in the predicted outcome, whether it is a benign ovarian tumor or ovarian 
cancer. 

 
Figure 1. KEY - Blue: sub-training accuracy, Orange: validation accuracy, 
Green: λ = 2; A graph generated by iterating through various values of λ 
(tuning parameter) and finding their corresponding accuracies in predicting 
ovarian cancer diagnosis. λ = 2 was determined to be the most desirable 
because it maximizes both validation and sub-training accuracy while 
maintaining minimal difference between them. 

 
Figure 2. KEY - Red: coefficient magnitude of biomarker CEA, Green: 
coefficient magnitude of biomarker HE4; A demonstration of how regression 
coefficients shrink to zero as λ, the regression model tuning parameter, 
increases. This enables LASSO to select features because, at an appropriate 
choice of λ, significant features will remain non-zero. In the graph, HE4’s 
high magnitude indicates its significance. CEA has been selected because it 
is non-zero, but it is not particularly significant. 



 

 
Figure 3. Absolute magnitudes of the regression coefficients. Higher 
magnitude indicates greater influence on predictive outcomes, while a 
magnitude of zero signifies a deselected feature. 

The results obtained through our model demonstrate the viability of 
using a logistic regression model with a LASSO penalty in order to 
predict an individual’s likelihood of developing ovarian cancer based on 
various features of their biological data. 

Limitations. 

The main limitation encountered in this study was the small size of the 
original dataset, which consequently made the training and testing 
sample sizes small as well. Due to this limitation, we found that splitting 
the data in different ways, namely using different seeds for the random 
sampling of the training dataset, resulted in different predictive 
accuracies. The small number of data points available for model training 
resulted in consistent overfitting. Ideally, we would have liked to 
perform the study using a larger dataset had one been available. 

Future Approaches. 

In the future, it may be worthwhile to repeat this study with the 
incorporation of cross-validation, which may help to mitigate the 
consequences of using a small dataset and prevent the developed model 
from overfitting the training data. In five-fold cross-validation, for 
example, we would split the data into five subsets, treating four of them 
as training data and the fifth as testing data. We would fit a model using 
these parameters, retaining the resulting evaluation score. After 
repeating this process five times, each time with a different test subset, 
we would ultimately determine the model’s accuracy based on the five 

evaluation scores. If this approach successfully prevents overfitting, it 
could serve as a valuable method to improve this study’s findings by 
identifying a model that is more widely applicable to previously unseen 
datasets. 

CONCLUSION. 

Inspired by the research performed by Lu et al. in their paper, “Using 
machine learning to predict ovarian cancer,” we sought to achieve a 
similar aim, namely the prediction of ovarian cancer, using a simpler, 
more convenient method of feature selection and model development. 
Using a logistic regression model with a LASSO penalty, we were able 
to achieve a predictive accuracy of 90.6% while also selecting the same 
features selected by Lu et al. in their study. Our findings demonstrate the 
potential for LASSO logistic regression in developing a machine 
learning model to predict an individual’s likelihood of future ovarian 
cancer. 
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GLOSSARY. 

Accuracy: Ratio of the number of correct results to the total number of 
results 

L1 Penalty: Sum of the coefficient magnitudes in a LASSO regression 
model; facilitates regularization 

λ (Lambda): Tuning parameter in a LASSO regression model whose 
increase causes coefficient magnitudes to shrink towards zero; facilitates 
feature selection 

LASSO: Regularization method that incorporates an L1 penalty to 
perform feature selection with respect to a tuning parameter, λ 

Logistic Regression: Predictive statistical method that models the 
conditional probability of a binary response variable Y given a value of 
X 

Regularization: Process by which a model’s coefficients are penalized; 
prevents overfitting to training data 

Sensitivity: Measure of true positives; ratio of the number of those 
predicted to have target disease to the total number of those with target 
disease 

Specificity: Measure of true negatives; ratio of the number of those 
predicted to not have target disease to the total number of those without 
target disease 

Training Dataset: Example data to which a machine learning model is 
fitted 

Validation Dataset: Example data on which a fitted machine learning 
model is tested in order to provide an estimate of prediction error 
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