# List of topics for the preliminary exam in algebra

### 1 Basic concepts

- 1. Binary relations. Reflexive, symmetric/antisymmetryc, and transitive relations. Order and equivalence relations. Equivalence classes.
- 2. Partially ordered sets. Smallest, largest, minimal, and maximal elements in a poset. Chain conditions. Zorn's Lemma.

### 2 Group theory

- 1. Groups. Definitions, basic properties, and examples.
- 2. Subgroups. Normal subgroups. Examples: normalizer, centralizer, and center. Subgroups generated by a subset, generating sets of a group. Subgroups of cyclic groups.
- 3. Homomorphisms of groups and their properties. Monomorphisms, epimorphisms, isomorphisms, and automorphisms. Classification of cyclic groups up to isomorphism.
- 4. Kernels of homomorphisms. Cosets and quotient groups. Homomorphism theorems.
- 5. The Lagrange theorem.
- 6. Direct products and direct sums of groups. Basic properties and examples.
- 7. Symmetric groups. Parity of a permutation. Decomposing a permutation into a product of transpositions. Cycle decomposition of a permutation. Computing parity of a product of disjoint cycles. Alternating groups.
- 8. Group actions on sets. Transitive, faithful, free, and regular actions. Stabilizers. Isomorphic actions. Classification of transitive and regular actions up to isomorphism. The Cayley theorem.
- 9. The orbit-stabilizer theorem. Application: every finite p-group has non-trivial center. Groups of order  $p^2$ .
- 10. Sylow's theorems. Examples of Sylow subgroups in cyclic groups,  $GL_n(\mathbb{Z}_p)$ , and  $S_p$  for a prime p. Application: Wilson's theorem.

- 11. Extensions of groups. Split extensions.
- 12. Classification of groups of order pq and other "small" groups.
- 13. Abelian groups. Free abelian groups and their bases. Subgroups of free abelian groups.
- 14. The decomposition theorem for finitely generated abelian groups.
- 15. Simple groups. Simplicity of  $A_n$  for  $n \geq 5$ .
- 16. Nilpotent groups and their basic properties. Examples: finite p-groups and  $UT_n(R)$ , where R is a commutative unital ring.
- 17. Nilpotency criterion for finite groups in terms of Sylow subgroups.
- 18. Solvable groups and their basic properties. Solvability of triangular matrix groups. The Burnside problem on torsion groups and its solution for solvable groups.
- 19. Free groups: the constructive definition and the universal property.
- 20. Normal closures and groups presentations. Examples.
- 21. Cayley graphs.
- 22. Subgroups of free groups. The Nielsen-Schreier formula.

### 3 Basic ring and field theory

- 1. Rings. Basic properties and examples. Zero divisors, nilpotent elements, and idempotents. Invertible elements and the group of units of a ring. Group rings. Direct products of rings. Subrings.
- 2. Integral domains and fields. Fields of quotients. Characteristic of a field.
- 3. Ring homomorphisms, ideals, and quotient rings.
- 4. Isomorphism theorems for rings.
- 5. Simple rings and ring quotients by maximal ideals.

# 4 Polynomials over fields and Galois theory

- 1. Rings of polynomials.
- 2. Polynomials over a field. Division algorithm. Applications: little Bézout's theorem, the number of roots of a polynomial over a field, polynomials versus polynomial functions. Groups of units of finite fields.

- 3. Divisibility in rings; gcd and lcm. Computing the gcd and lcm of a set of polynomials over a field. Application: all ideals in K[x], where K is a field, are principal.
- 4. Reducible and irreducible polynomials over a field. Decomposing a polynomial into a product of irreducible polynomials. Quotients by ideals generated by irreducible polynomials.
- 5. Existence of the splitting field of a polynomial. Algebraically closed fields.
- 6. The fundamental theorem of algebra. Classification of irreducible polynomials over  $\mathbb{R}$ .
- 7. Irreducibility of polynomials over  $\mathbb{Z}$  and  $\mathbb{Q}$ . The Gauss lemma and Eisenstein's criterion.
- 8. Algebraic and transcendental extensions. Degrees of extensions. Classification of simple extensions.
- 9. Ruler-and-compass construction. The problems of doubling the cube and constructing the regular pentagon.
- 10. Splitting fields: existence and uniqueness.
- 11. Classification of finite fields and their subfields. Frobenius lemma, automorphisms of finite fields.
- 12. Algebraic closures. Existence and uniqueness of the algebraic closure of a field.
- 13. Normal extensions: equivalent definitions and examples. Galois groups. Representing the Galois group of the splitting field of a polynomial by permutations.
- 14. Separable polynomials. Separability of irreducible polynomials over finite fields and fields of characteristic 0. Separable extensions: examples and non-examples.
- 15. Simple extensions and Artin's primitive element theorem.
- 16. Galois extensions. The Galois group of a polynomial. Order of the Galois group of a finite extension. Examples of extensions with Galois groups  $\mathbb{Z}_2^n$ ,  $S_3$ ,  $S_5$ .
- 17. The fundamental theorem of Galois theory.
- 18. Solvability of algebraic equations in radicals and Galois groups. Unsolvability of equations of degree 5 in radicals.
- 19. The inverse Galois problem. Examples of extensions with Galois group  $\mathbb{Z}_n$ . Theorems of Hilbert and Shafarevich (without proof).

## 5 Advanced topics in ring theory

- 1. Euclidean domains and division algorithm. Examples: rings of polynomials, Gaussian integers.
- 2. Principal ideal domains. Every Euclidean ring is a PID.  $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$  is a PID but not Euclidean.
- 3. Irreducible and prime elements in integral domains. Associates. Unique factorisation domains. Examples of integral domains with non-unique factorization.
- 4. Rings of polynomials over UFDs. Relation between PIDs and UFDs.
- 5. Noetherian rings. The Hilbert basis theorem.
- 6. Finite division rings. The little Weddeburn Theorem.

#### 6 Modules

- 1. Modules over unital rings. Submodules. Basic properties and examples. Homomorphisms of modules, kernels and quotients.
- 2. Free modules over PIDs and their submodules. Torsion free modules.
- 3. The decomposition theorem for finitely generated modules over PID's. The Jordan normal form of a matrix over an algebraically closed field. Minimal and characteristic polynomials of a matrix. The Cayley-Hamilton Theorem.
- 4. Injective and projective modules.

# 7 Associative algebras

- 1. Associative algebras over fields. Subalgebras, ideals, homomorphisms, and quotients.
- 2. Dimension of an algebra. Finite dimensional algebras and their matrix representations.
- 3. Division algebras. Finite dimensional division algebras and zero divisors. Finite dimensional division algebras over algebraically closed fields.
- 4. Real division algebras. Quaternions. Frobenius Theorem.
- 5. Central simple algebras. Simplicity of matrix algebras. The Artin-Weddeburn Theorem.
- 6. Free associative algebras.

## 8 Topics in Representation theory

- 1. Linear and matrix representations of groups. Invariant subspaces and subrepresentations. Irreducible representations. The sum of representations.
- 2. Group representations and modules, Maschke's theorem.
- 3. Equivalent representations. The number of non-equivalent irreducible complex representations of a finite group and their dimensions.
- 4. Constructing irreducible complex representations of finite abelian groups and of some "small" finite groups.

## 9 Topics in universal algebra

- 1. Lattices and Complete lattices.
- 2. Algebras (in the sense of universal algebra).
- 3. Homomorphisms and subalgebras. Congruence relations. Homomorphism theorems.
- 4. Varieties of Algebras.
- 5. Birkhoffs variety theorem (illustrated and proved in the context of group theory).

#### 10 Recommended textbooks

Most topics are covered in either of the following three books:

- [1] J. Rotman, A First Course in Abstract Algebra, Pearson, 2005.
- [2] J. B. Fraleigh, A First Course in Abstract Algebra. Pearson, 2002.
- [3] J. Gallian, Contemporary Abstract Algebra. Brooks Cole, 2012.

Good references for some additional topics and different perspectives are

- [4] S. Lang, Algebra. Springer, 2005.
- [5] B. L. van der Waerden, Modern Algebra. Frederick Ungar Publishing Co., 1949.